9.2 Truth Tables

In this section we'll look at how the truth values of $\sim p,\ p\vee q,\ p\wedge q$ depend on the truth values of p and q.

Fact: $\sim p$ is true exactly when p is false.

Let's build what is called the **truth table** for $\sim p$:

$$\frac{\rho \wedge \rho}{\tau \mid F} \qquad (2 \text{ rows})$$

$$F \mid \tau$$

Fact: $p \lor q$ is true exactly when at least one of p or q is true.

Example: Build the truth table for $p \vee q$.

Fact: $p \wedge q$ is true exactly when both p and q are true.

Example: Build the truth table for $p \wedge q$.

Definition: $p \oplus q$ means: p or q, but not both. It is pronounced "p exclusive or q" or "p xor q".

Fact: $p \oplus q$ is true exactly when p and q have different truth values.

Example: Build the truth table for $p \oplus q$.

Inclusive or: Do you take cream or sugar? Exclusive or: Should I go to class or not? **Example:** Build the truth table for $\sim (p \land q)$.

P	9	png	$\sim (pnq)$
T	THTF	TEFF	下 て て

Example: Build the truth table for $(p \oplus q) \lor (p \land q)$.

P	G	PAG	prg/	(pag) v (prg)
	T	F	T	
T	F	1	F	
F	一一	7	F	T
F	F	F	F	

Example: Build the truth table for $(p \land q) \lor r$.

The Empound statement involves 3 statements: P, 2, r. Need 2x2x2 = 8 mws

P	9		PAG	(prg)vr
7	\top	T	T	1
	一	F	T	
	F	T	F	
1	F	F	F	
F	T	T	F	T
F	7	F	F	F
F	F	1	F	T
F	F	\ +	F	

Example: Build the truth table for $(p \lor q) \oplus ((p \lor r) \land \sim p)$. The Good Statement Mooles 3 statements: $P_1 P_1 \cap P_2 \cap P_3 \cap P_4 \cap P_$							
P	9	r	pvg	pVC	$ \sim $	(pvr) 1~p	
TTTTT	T	THTH	T て て	T	F F F F	F F	
FFFF	TTFF	TFTF	TTF	TFTF	T T T	T F T	トナナト

Definition: A statement that is always true is called a **tautology**. A statement that is always false is called a **contradiction**.

Example: Is the following statement a tautology, a contradiction, or neither? $\sim (p \lor q) \land q$

P 9	pvg	$\sim (pv)$	$(q) \sim (pvq) \wedge q$
T T F F	TTTT	FFFT	FFF
~ (prq)	ng is	a 60	always false tradiction.