7.1 Markov Chains

In this chapter we'll use matrices to make predictions.

Example: We have the following information about CleanHair Shampoo company:

90% of CleanHair customers will buy CleanHair next time.

10% of CleanHair customers won't buy CleanHair next time.

20% of other brand customers will buy CleanHair next time.

80% of other brand customers won't buy CleanHair next time.

a) Draw the transition diagram.

Y: a consumer uses CleanHair N: a Gusumer does not use CleanHair 0.1 0.2

b) Find the transition matrix.

$$P = \begin{cases} Y & N \\ 0.9 & 0.1 \\ N & 0.2 & 0.8 \end{cases}$$

$$W = \begin{cases} 0.9 & 0.1 \\ 0.2 & 0.8 \end{cases}$$

$$W = \begin{cases} 0.9 & 0.1 \\ 0.2 & 0.8 \end{cases}$$

$$W = \begin{cases} 0.9 & 0.1 \\ 0.2 & 0.8 \end{cases}$$

Fact: Properties of a Transition Matrix:

- 1) It's a square matrix $(2 \times 2 \text{ or } 3 \times 3)$.
- 2) All entries must be at least zero.
- 3) Each **row** sums to 1.

Comment: In a transition diagram, the arrows leaving a state sum to 1.

Definition: The initial state matrix is written S_0 .

Example: Interpret $S_0 = \begin{bmatrix} 0.4 & 0.6 \end{bmatrix}$ in the context of the CleanHair Shampoo example.

States must be in same order as in P.

40% of assumers use CleanHair now.

60% II II don't use II II

Fact: Given the initial state matrix S_0 and the transition matrix P:

The next state matrix is $S_1 = S_0 P$

The state matrix after that is $S_2 = S_1 P$

The state matrix after that is $S_3 = S_2 P$

etc.

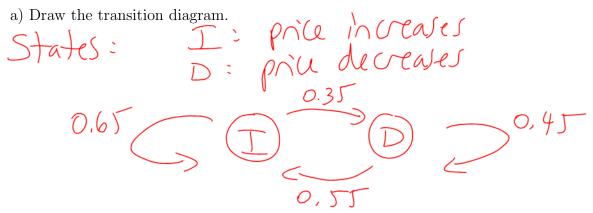
Example: Suppose $S_0 = \begin{bmatrix} 0.4 & 0.6 \end{bmatrix}$ and $P = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}$, where the states are Y and N in that order. Find S_1 and S_2 and interpret them in the context of the CleanHair shampoo example.

$$S_1 = S_0 P$$
 $= [0.4 \ 0.6] [0.2 \ 0.8]$
 $= [0.48 \ 0.52]$
 $= [0.48 \ 0.52]$
 $= [0.48 \ 0.52] [0.9 \ 0.1]$
 $= [0.48 \ 0.52] [0.2 \ 0.8]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \ 0.464]$
 $= [0.536 \$

Fact: Given any state matrix $(S_0, S_1, S_2 \text{ etc.})$, the probabilities sum to 1.

Definition: A Markov chain is a sequence of state matrices $S_0, S_1, S_2, S_3, \dots$

Example: We have the following information about the price of a certain company's stock: If the price increases one day then the probability that it increases the next day is 65%. If the price decreases one day then the probability that it decreases the next day is 45%.



b) Find the transition matrix.

c) There is an 80% probability that the stock's price will decrease today. Find the probability that the price increases two days from now.

$$S_0 = \begin{bmatrix} 5 & 0 \\ 0.2 & 0.8 \end{bmatrix}$$
 foldows
$$S_1 = S_0 P$$

$$= \begin{bmatrix} 0.2 & 0.8 \end{bmatrix} \begin{bmatrix} 0.65 & 0.35 \\ 0.55 & 0.45 \end{bmatrix}$$

Example Continued...

$$S_2 = S_1 P$$

$$= [0.57 0.43] \begin{cases} 0.65 & 0.35 \\ 0.55 & 0.45 \end{cases}$$

$$= [0.57 0.43] \begin{cases} 0.65 & 0.35 \\ 0.55 & 0.45 \end{cases}$$

$$= [0.607 0.393] \begin{cases} 0.65 & 0.35 \\ 0.55 & 0.45 \end{cases}$$
The probability that the price increases two days from now is $60.7 b$

Comment: Depending on the problem, the next state matrix could represent the next purchase, the next day, the next week, the next year etc.