5.1 Expected Value

In this chapter we'll look at two specific probability concepts that come up in business, science, and social science.

Notation: In Chapter 5 we'll write probabilities as P(E) instead of Pr(E). Feel free to use either notation.

Notation: In Chapter 5 we'll write combinations in the format 5C3 instead of C(5,3). Feel free to use either notation. (Sugg. HW problems we taken from Various textbooks)

Definition: A random variable assigns a number to each outcome of an experiment. Random variables are written X.

Example: Three fair coins are flipped. Let X be the number of heads that appear in the probability distribution of X.

X	Description	# of Ways	P(x)
0	TTT		1/8
1	HTT, THT, TTH	3	3/8
2	HTT, THT, TTH HHT, HTH, THH	3	3)8
3	444	,	/ 8

Example: Referring to the previous example, let's draw the histogram (bar chart)

that represents X. $\rho(\chi)$

Definition: The **expected value** of a random variable X is the theoretical average of X if the experiment were repeated infinitely-many times. H is sometimes (all ed the mean of X).

Notation: The expected value of X is written μ or E(X). Feel free to use either notation.

Fact: $\mu = x_1 p_1 + x_2 p_2 + \ldots + x_n p_n$ where:

 x_1, x_2, \ldots, x_n are the values of X

 p_1, p_2, \ldots, p_n are their respective probabilities

Example: A fair die is rolled. Let X be the number rolled. Find the expected value of X.

$$X \qquad f(x)$$

$$1 \qquad 1/6$$

$$2 \qquad 1/6$$

$$3 \qquad 4 \qquad 5$$

$$6 \qquad 1/6$$

$$M = 1\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) + 3\left(\frac{1}{6}\right) + \dots + 6\left(\frac{1}{6}\right)$$

$$M = 3.5$$
or $E(x) = 3.5$

Example: A box contains nine \$5 bills and six \$10 bills. You pay \$8 and randomly draw a bill from the box. Let X be your net winnings (in dollars). Find the expected value of X.

$$X = \text{net winnings}$$

$$= \text{amount won - Cost}$$

$$\frac{X}{9} = \frac{1}{6}$$

$$\frac{$$

Example: You insure a used car worth \$4,000 against theft for one year by paying a premium of \$112. The probability that the car is stolen during this year is 1.3%. Find your expected net gain (in dollars) on the insurance policy.

$$X = \text{net } \text{gain}$$

$$= \text{inswanle } \text{payout} - \text{premium}$$

$$\frac{X}{4000-112} = 3888 \quad 0.013$$

$$\text{car isn'tsblen} \rightarrow -112 \quad 0.987 \quad = 1-0.013$$

$$M = 3888 \quad (0.013) + (-112) \quad (0.987)$$

$$= -60$$
or $E(X) = -60$
Expect to lose \$60, or average, each year.
(But we're protected against a large bors.)

Example: A shipment contains ten good and five defective items. We randomly select three items from the shipment. Find the expected number of good items that are selected.

X=# of good :tems selected Let G: good D: defective X Description # of ways P(X)					
0	3D.	5c3 = 10	10/455		
	16 and 20	10 C1 × SC 2 = 100	100/455		
2	2 G and 1D	10 (2 X SCI = 215	120/455		
3	34	10 (3 = 120	1 2 0 / 9 3 3		
10ta = 455					
$M = 0 \left(\frac{10}{455} \right) + 1 \left(\frac{100}{455} \right) + 2 \left(\frac{225}{455} \right) + 3 \left(\frac{120}{455} \right)$					
= 2					
or E(x)=2 We expect to select 2 good : tens, on average.					

Definition: A game is **fair** if the expected net winnings is equal to zero.

Example: You pay \$1 to roll a fair die. If you roll a 1 or a 6, you win \$5. Otherwise, you must pay k more dollars. Find k so that the game is fair.

Game is fair

$$\Rightarrow M = 0$$

$$4\left(\frac{2}{6}\right) + \left(-1 - k\right)\left(\frac{4}{6}\right) = 0$$

Multiply by 6:
$$4(2) + (-1-h)(4) = 0$$

 $8 - 4 - 4k = 0$
 $4 = 4k$
 $1 = k$