4.2 Basic Probability Concepts

Definition: The **probability** of an event is a measure of how likely the event is.

Notation: We often write probabilities as decimals. Pr(E) = 0.35 means that the probability of event E is 35%.

Fact: Any probability is always between 0 and 1 inclusive.

Pr(F) = 0 means the probability of event F is 0%, in other words event F cannot happen. Pr(G) = 1 means the probability of event G is 100%, in other words event G is guaranteed to happen.

Fact: For any experiment, if we sum the probabilities of all the outcomes we get 1.

Definition: A **probability distribution** is a table that lists the different outcomes of an experiment and their probabilities.

Example: We toss a fair coin and record heads or tails. Let's write down the probability distribution.

Outone Probability

H 0.5

T 0.5

Example: Some students are polled on their program. Use the following information to find the probability distribution.

Program	Number of Students
Business	13
Technology	18
Nursing	9

Outcome Probability

Business
$$\frac{13}{40} = 0.325$$

Technology $\frac{18}{40} = 0.45$

Nursing $\frac{9}{40} = 0.225$

Fact: The probability of an event is the sum of the probabilities of the relevant outcomes.

Example: An unfair four-sided die has the following probability distribution:

Roll	Probability
1	0.1
2	0.35
3	0.3
4	0.25

a) Find the probability that a roll is less than 3.

$$Pr(n|i, 1) + Pr(n|i, 2)$$
= 0.1 + 0.35
= 0.45

b) Find the probability that a roll is odd.

$$Pr(n|is_1) + Pr(n|is_3)$$

= 0.1 + 0.3
= 0.4

c) Find the probability that a roll is less than 2 and even.

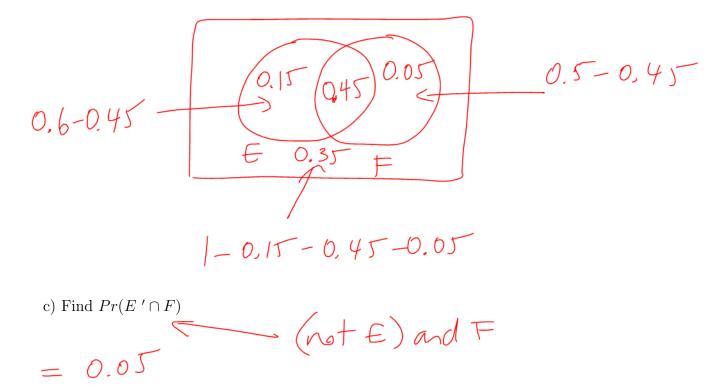
Example: An experiment has possible outcomes A, B and C. We are given Pr(A) = 0.4 and we are told that outcome B is three times as likely as outcome C. Find the probability distribution.

Fact: Inclusion-Exclusion Principle $Pr(E \cup F) = Pr(E) + Pr(F) - Pr(E \cap F)$

Comment: Compare this with Section 3.2: $n(E \cup F) = n(E) + n(F) - n(E \cap F)$

Example: Given $Pr(E) = 0.6, Pr(F) = 0.5 \text{ and } Pr(E \cup F) = 0.65.$

a) Find $Pr(E \cap F)$

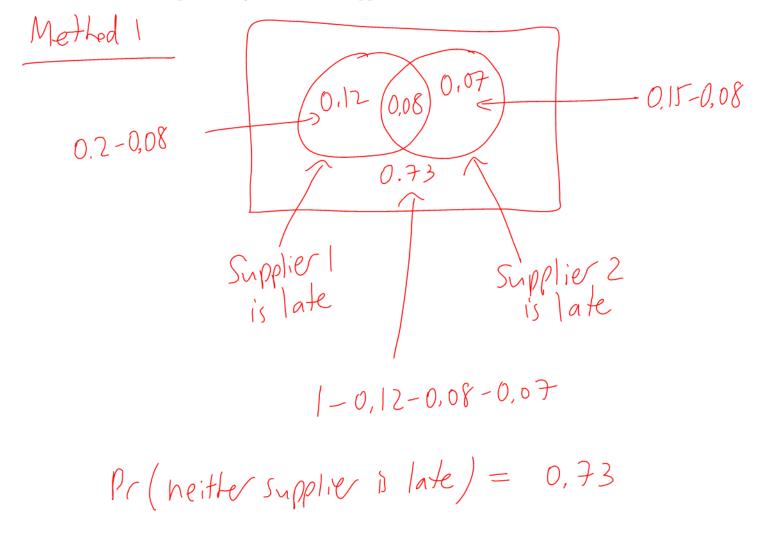

$$Pr(E \lor F) = Pr(E) + Pr(F) - Pr(E \land F)$$

$$0.65 = 0.6 + 0.5 - Pr(E \land F)$$

$$-0.45 = -Pr(E \land F)$$

$$0.45 = Pr(E \land F)$$

b) Draw a Venn diagram



Fact: Complement Rule Pr(E) = 1 - Pr(E')

Comment: This is true because Pr(E) + Pr(E') = 1. The Complement Rule can also be rephrased as: Pr(E') = 1 - Pr(E)

Example: A company has two suppliers. The probability that Supplier 1 is late is 20%. The probability that Supplier 2 is late is 15%. The probability that both suppliers are late is 8%. Find the probability that neither supplier is late.

Example Continued ... Method 2 Pr(Supplier 1 or Supplier 2 is late) = Pr(Supplier) is late) + Pr(Supplier 2 is late) - Pr (both we late) 0.2 + 0.15 - 0.08 0,27 Pr (neither is late) = 1 - Pr (Supplier 1 or Supplier 2 is late)

(-0.27

= 0.73