3.5 Permutations and Combinations

Definition: A **permutation** is an ordered selection of r objects from a group of n objects.

Notation: The number of permutations is written P(n,r).

Fact:
$$P(n,r) = \underbrace{n \times (n-1) \times (n-2) \times \cdots \times (n-r+1)}_{\text{factor}}$$

Example: Compute the following in two ways: using the formula above and using your calculator.

- a) P(40,3)
- = 40X39X38
- = 59,280

40 2nd F [npr 3] =

- b) P(4,4)= $4 \times 3 \times 2 \times 1$ = 24

c) P(8,1)

= 8

Example: How many two-letter "words" (including nonsense words) can be formed from A,B,C,D if repetition is not allowed?

$$P(4|2)$$

= 4 x 3
= 12

Notation: $n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$ It is pronounced "n factorial."

Example: Compute the following in two ways: using the formula above and using your calculator.

$$= SX + X 3X ZX$$

$$= 120$$

$$=3XZXI$$
 $=6$

Comment: Note that 0! = 1 by definition. You can confirm this on your calculator.

Example: How many ways are there to arrange four books in a row?

Fact:
$$P(k,k) = k!$$
 for $k = 0, 1, 2, ...$

$$P(6,6) = 6!$$

 $P(3,3) = 3!$
etc.

Definition: A **combination** is an unordered selection of r objects from a group of n objects.

Notation: The number of combinations is written C(n,r).

Fact:
$$C(n,r) = \frac{P(n,r)}{r!}$$

Example: Compute the following using your calculator.

a)
$$C(40,3)$$

b)
$$C(4,4)$$

c)
$$C(8,1)$$

Example: How many ways are there to select two people from a group of four?

$$C(4|z) = 6$$

Example: We have interviewed 20 candidates for a job. How many ways are there to select our 1st, 2nd and 3rd choice?

ordered
$$P(20,3)$$
 or $20\times19\times18$
 $= 6,840$

Example: A class has 45 students. How many ways are there to form a four-person team?

Example: In a batch of 150 numbered phones, four are defective.

a) How many ways are there to select three phones from the batch?

unordered
$$C(150,3)$$
 = $551,300$

b) How many ways are there to select three defective phones from the batch?

unordered
Select 3 of 4 defective phones
$$C(4,3)$$
= 4

The standard deck of cards sometimes comes up in counting problems.

Example: In this example we'll write down everything we need to know about the standard deck of cards.

52 cards divided into 4 suits:

\[
\text{hearts diamonds clubs spades} \\
\text{"red cards" "black cards"}
\]

\[
\text{Each suit has 13 cards: } A, 2, 3, \ldots, lo, J, Q, K
\]

Example: How many five-card hands from a standard deck have:

a) only hearts?

unordered

Sefect S of 13 hearts C(13,5) = 1287

b) no hearts? unordered 52-13=39 non-hearts in the deck Sek(t 5 of 39 non-heartsC(39,5) = S75,757 **Example:** How many ways are there to select four of seven books and arrange them in a row?

Method 1 =
$$P(7,14) = 7 \times 6 \times 5 \times 4$$

= 840
Method 2: $C(7,14) \times 4!$
Select the Order the 4 books
= 35×24
= 840

Example: Five students are giving presentations. How many orders are possible if Al goes last and Bob goes first or second?

$$\frac{A1}{77}$$

$$\frac{A1}{800}$$

$$\frac{A1}{3!} = 2 \times 6 = 12$$
Select order the stor3 people position

Example: How many ways are there to arrange four pairs of people in a row so that each pair is adjacent?

$$= 24 \times 2^4$$

= 384