Course Overview

Finite Math is a collection of real-world applications that build on Math 11. Here are the main topics, with an example application for each topic.

Chapters 3-5 Sets, Counting and Probability Is an event likely or unlikely to happen?

Chapters 1-2 Linear Programming How to maximize profit with a fixed amount of capital and raw materials?

Chapters 6-7 Matrices and Markov Chains Predict a company's marketshare two years from now.

Chapter 8 Financial Math What will your monthly payment be when taking out a loan?

Chapter 9 Logic
Helpful when reading legal documents like employment contracts or tenancy agreements.

3.1 Sets

Definition: A **set** is a collection of objects. The objects are called **elements**.

Here is a set with three elements:

$$A = \{x, y, z\}$$

Here is a set with four elements:

$$B = \{3, 5, 7, 9\}$$

Example: Write down the following sets:

a) $A = \{$ all the letters before f in the English alphabet $\}$

b) $B = \{$ all the even numbers between 5 and 9 $\}$

c) $C = \{$ all the even numbers between 5 and 7 $\}$

Definition: The **union** of sets A and B is the set of elements that are in A or B or both. It is written $A \cup B$.

Definition: The **intersection** of sets A and B is the set of elements that are in both A and B. It is written $A \cap B$.

Example: Let $A = \{-3, -1, 3\}$ and $B = \{-2, -1, 3\}$. Find:

a) $A \cup B$

$$AUB = \{-3, -2, -1, 3\}$$

b) $A \cap B$

$$ANB = [-1,3]$$
 AND

Example: Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$ and $C = \{0, 1, 5, 6\}$. Find $(A \cup B) \cap C$.

$$AUB = \{1,2,3,4,5\}$$

 $(AUB) nc = \{1,5\}$

Definition: B is a subset of A, written $B \subseteq A$, if every element of B is an element of A.

Example: Let's write down some examples of subsets.

$$\{1,3\} \subseteq \{1,2,3\}$$

 $\{1,3\} \subseteq \{1,3\}$
 $\{1,3\} \subseteq \{3,1\}$
 $\{3,4\} \notin \{1,2,3\}$
is not a subset of

Definition: The **empty set** contains no elements. It is written \varnothing .

Fact: The empty set is a subset of every set.

Example: Let's write down some examples involving the empty set.

$$\{1,3\} \cap \{2,4\} = \emptyset$$

 $\phi \subseteq \{1,3,4\}$
 $\phi \subseteq \{4\}$

Example: List all the subsets of $\{x, y, z\}$.

$$\{x_{1},y_{1},t\}$$
 $\{x_{1},y\}$
 $\{x_{1},t\}$
 $\{y_{1},t\}$
 $\{y_{1},t\}$
 $\{y_{2},t\}$
 $\{y_{3},t\}$

Definition: The **complement of A** is the set of elements in the universal set U that are not in A. It is written A'.

Example: Let $U = \{a, b, c, d, f\}$, $A = \{b, c\}$ and $B = \{c, d, f\}$. Find:

a) A'

b)
$$(A \cup B)'$$

$$A \cup B = \{b, c, d, f\}$$

$$(A \cup B)^{l} = \{a\}$$

c)
$$A' \cup B$$

$$A' = \{a, d, f\}$$

$$A' \cup B = \{a, c, d, f\}$$

Notation: $b \in A$ means: b is an element of set A.

Example: Let's write down some examples to practice notation for elements and subsets.

$$-1 \in \{-2, -1\}$$

$$\{-1\} \subseteq \{-2, -1\}$$

$$-3 \notin \{4, 5\}$$
is not an element of
$$\{-3\} \notin \{4, 5\}$$