Assignment 1 is on website Due Thws Sept 18, 11:30 am Submit on DZL

Test 1
Thes Sept 23, 1:30-2:20

S Questions
Givers 1.1-1.4, 2.1-2.2

Bring calculator, music/earplugs

Practice Problems on website

No formula sheet

Fact: There are three types of elementary row operations that can be performed on an augmented matrix. These row operations don't change the solution of the system:

- 1) Swap two rows
- 2) Multiply or divide a row by a nonzero real number
- 3) (Current Row) \pm #(Pivot Row)

Example: Solve by elimination:

Example: Solve:

Fact: A system has no solution if the following type of row appears while performing row operations:

[all zeros | nonzero]

Example: Solve:

(y=0+1t)

$$2x - 3y = 8$$

$$-4x + 6y = -16$$

$$\begin{bmatrix} 2 & -3 & | & 8 \\ -4 & 6 & | & -16 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -\frac{3}{2} & | & 4 \\ -4 & 6 & | & -16 \end{bmatrix}$$

$$R_2 + 4R_1$$

$$\begin{bmatrix} 1 & -\frac{3}{2} & | & 4 \\ -4 & 6 & | & -16 \end{bmatrix}$$

$$R_2 + 4R_1$$

$$\begin{bmatrix} 1 & -\frac{3}{2} & | & 4 \\ -4 & 6 & | & -16 \end{bmatrix}$$

$$R_2 + 4R_1$$

$$\begin{bmatrix} 1 & -\frac{3}{2} & | & 4 \\ -4 & 6 & | & -16 \end{bmatrix}$$

$$R_2 + 4R_1$$

$$\begin{bmatrix} 1 & -\frac{3}{2} & | & 4 \\ -4 & 6 & | & -16 \end{bmatrix}$$

$$R_2 + 4R_1$$

$$\begin{bmatrix} 1 & -\frac{3}{2} & | & 4 \\ -4 & 6 & | & -16 \end{bmatrix}$$

$$R_2 + 4R_1$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2} & | & 4 \end{bmatrix}$$

$$\begin{cases} 1 & -\frac{3}{2} & | & 4 \\ -4 & -\frac{3}{2}$$

Example: Solve:

$$x = 5$$

$$2x + 3y = 4$$

$$3x + 4y = 7$$

$$\begin{cases}
1 & 0 & | 5 \\
2 & 3 & | 4 \\
7
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
2 & 3 & | 4 \\
7
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 3 & | -6 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0 & | 5 \\
0 & 4 & | -8
\end{cases}$$

$$\begin{cases}
1 & 0$$

The system has I unique solution.

Definition: Back-substitution is the process of solving a system from the bottom equation upwards.

Example: Solve by back-substitution:

$$4x + y + z = 15$$

$$3y + 5z = 29$$

$$2z = 8$$

$$2 = 3y + 5z = 29 \Rightarrow 3y + 20 = 29 \Rightarrow y = 3$$

$$4x + y + z = 15 \Rightarrow 4x + 3 + 4 = 15 \Rightarrow x = 2$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

Comment: Most systems can't be solved by back-substitution.

2.2 Solving Systems

Definition: A matrix is in **row-echelon form** (REF) if:

any zero rows are at the bottom AND

the leading nonzero entries of each row move down and right

Comment: The following matrices are in REF:

$$\begin{bmatrix} 6 & 0 & -1 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & -1 \\ 0 & 4 & 7 \\ 0 & 0 & 0 \end{bmatrix}$$

Definition: An augmented matrix is in REF if the coefficient matrix is in REF.

Comment: The following matrices are in REF:

$$\begin{bmatrix}
6 & 0 & -1 & 1 \\
0 & 0 & 3 & 2 \\
0 & 0 & 0 & 3
\end{bmatrix}$$

$$\left[\begin{array}{ccc|c}
2 & 3 & -1 & 0 \\
0 & 4 & 7 & 0 \\
0 & 0 & 0 & 9
\end{array}\right]$$

Definition: One method of solving a system is **Gaussian Elimination**. The augmented matrix is transformed to REF using elementary row operations. The system is then solved by back-substitution.

Example: Solve by Gaussian Elimination:

$$x+2y+z=6$$

$$2x+2y=8$$

$$3y+z=8$$

$$\begin{cases} 1 & 2 & | 6 \\ 2 & 2 & | 8 \\ 2 & 2 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ 2 & 2 & | 8 \\ 0 & 3 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 2 & | 6 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 3 & | 8 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 3 & | 8 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 3 & | 8 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 3 & | 8 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 3 & | 8 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 3 & | 8 \\ -4 & | 8 \end{cases}$$

$$\begin{cases} 1 & 3$$

Back-substitution

Definition: A matrix is in reduced row-echelon form (RREF) if:

the matrix is in REF,

the leading nonzero entry in each row is 1, AND

these leading ones have zeros everywhere else in their columns

Comment: The following matrices are in RREF:

Comment: The following matrix is in REF but not RREF:

Definition: An augmented matrix is in RREF if the coefficient matrix is in RREF.

Comment: The following matrices are in RREF:

Γ	1	0	0	1	T 1	5	0	9
	0	1	0	2	0	0	1	9
L	0	0	1	3	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0	0	9

Definition: Another method of solving a system is **Gauss-Jordan Elimination**. The augmented matrix is transformed to RREF using elementary row operations. This is typically faster than Gaussian Elimination.

Gaussian Elimination: REF and back-substitution Gauss-Jordan Elimination: RREF (preferable)