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2.1 Linear Systems

Fact: There are three types of elementary row operations that can be performed on an
augmented matrix. These row operations don’t change the solution of the system:

1) Swap two rows

2) Multiply or divide a row by a nonzero real number

3) (Current Row) + #(Pivot Row)

Example: Solve by elimination:

2r+6y = —14
—3zx+3y = —15
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2.1 Linear Systems

Example: Solve:

20 -3y = 8
—4dx+6y = 20
Pl Y F
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Fact: A system has no solution if the following type of row appears while performing row
operations:
[ all zeros | nonzero]
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2.1 Linear Systems

Example: Solve:

2 -3y = 8
—dr+6y = —16
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2.1 Linear Systems

Example: Solve:

DO
8
+
w
<
1
~ = Ot
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2.1 Linear Systems

Definition: Back-substitution is the process of solving a sytem from the bottom equa-
tion upwards.

Example: Solve by back-substitution:

dx+ y+ z = 15
3y+52z = 29
2z = 8

l2=% = =z=4Y
_ _ = = =3
33+S%,2ﬂ =) 33+20 1 = 3

Trayrz =I5 = Yy +3+1=15 =

( pa
[} = 3 o
z Lt

Comment: Most systems can’t be solved by back-substitution.
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2.2 Solving Systems

2.2 Solving Systems

Definition: A matrix is in row-echelon form (REF) if:
any zero rows are at the bottom AND
the leading nonzero entries of each row move down and right

Comment: The following matrices are in REF:

3 -1
00 (3) 0(4)7

00 O 00 O

Definition: An augmented matrix is in REF if the coefficient matrix is in REF.

Comment: The following matrices are in REF:
2 —-11]0

W N =

3
04 710
00 019
Definition: One method of solving a system is Gaussian Elimination. The augmented

matrix is transformed to REF using elementary row operations. The system is then solved
by back-substitution.

47



2.2 Solving Systems

Example: Solve by Gaussian Elimination:
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2.2 Solving Systems

Definition: A matrix is in reduced row-echelon form (RREF) if:
the matrix is in REF,

the leading nonzero entry in each row is 1, AND

these leading ones have zeros everywhere else in their columns

Comment: Th?ﬂowing matrices are in RREE:

1) 0 -3 0 0 70

0(1)3 0 (1o EDQD
00 o

®)

00 0

Comment: The following matrix is in REF but not RREF:
3

1 6

00

1
0
10

Definition: An augmented matrix is in RREF if the coefficient matrix is in RREF.

Comment: The following matrices are in RREF":
1 0 01 1 5019
01 0|2 00 1|9
00 1|3 00 0/9

Definition: Another method of solving a system is Gauss-Jordan Elimination. The
augmented matrix is transformed to RREF using elementary row operations. This is typi-
cally faster than Gaussian Elimination.
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