List of HW Problems and Full Solutions are on website.

Problems are on DZL.

Do HW for Sections 1.1 and 1.2

No Somula sheet for Math 251.

nonzero vectos

Fact: Let \vec{u} and \vec{v} be in \mathbb{R}^n . The angle θ between \vec{u} and \vec{v} is defined to be $0^{\circ} \leq \theta \leq 180^{\circ}$

Fact: For all \vec{u}, \vec{v} in \mathbb{R}^n : $\vec{u} \cdot \vec{v} = ||\vec{u}|| \ ||\vec{v}|| \cos \theta$

Comment: In \mathbb{R}^4 and higher dimensions, this is a definition of θ .

Comment: In the special case where \vec{u} and \vec{v} are unit vectors, $\vec{u} \cdot \vec{v}$ gives the value of $\cos \theta$.

Example: Find the angle between
$$\vec{u} = [1, -4]$$
 and $\vec{v} = [2, 3]$

$$\begin{array}{c}
\mathcal{U} \cdot \vec{V} = ||\vec{U}|| ||\vec{V}|| ||GS\theta \\
-|o| = \sqrt{17} \sqrt{13} ||GS\theta \\
\frac{-|o|}{\sqrt{17} \sqrt{13}} = |GS\theta \\
\theta = |GS| = |GS\theta \\
\sqrt{17} \sqrt{13}$$

$$\begin{array}{c}
\mathcal{U} \cdot \vec{V} = ||\vec{V}|| ||V|| ||GS\theta \\
\sqrt{17} \sqrt{13} ||GS\theta \\
\sqrt{17} \sqrt{13} ||GS\theta \\
|GS\theta \\
|GS\theta$$

Example: If $0^{\circ} \leq \theta < 90^{\circ}$, what is the sign of $\vec{u} \cdot \vec{v}$?

What if $\theta = 90^{\circ}$?

What if $90^{\circ} < \theta \le 180^{\circ}$?

$$0^{\circ} \leq \theta < 90^{\circ}$$
 $\theta = 90^{\circ}$ $90^{\circ} < \theta \leq 180^{\circ}$ $\Rightarrow 0^{\circ} \leq \theta \leq 0$ $\Rightarrow 0^{\circ} \leq \theta \leq 0$

Definition: Vectors \vec{u} and \vec{v} are **orthogonal** if $\vec{u} \cdot \vec{v} = 0$.

Comment: The following statements are equivalent in 2D and 3D:

Vectors \vec{u} and \vec{v} are perpendicular (geometry language)

Vectors \vec{u} and \vec{v} are orthogonal (algebra language)

Comment: In higher dimensions it's more appropriate to use the word orthogonal rather than perpendicular.

Definition: The **projection** of \vec{v} onto \vec{u} is written $\text{proj}_{\vec{u}}\vec{v}$. This could be read as the projection onto \vec{u} of \vec{v} .

Example: Let's draw a few instances of $\operatorname{proj}_{\vec{u}}\vec{v}$

Fact: $\operatorname{proj}_{\vec{u}} \vec{v} = \frac{\vec{u} \cdot \vec{v}}{||\vec{u}||^2} \vec{u}$

Example: Find $\text{proj}_{\vec{u}}\vec{v}$ for $\vec{u} = [1, 2]$ and $\vec{v} = [1, 3]$

$$Proj_{\vec{u}} \vec{v} = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^2} \vec{u}$$

$$= \frac{3}{5} [1, 2] \quad \text{or} \quad \frac{7}{5} \vec{u}$$

Fact: Given vectors \vec{u}, \vec{v} in \mathbb{R}^n , there is exactly one way to decompose \vec{v} into two vectors that are parallel and perpendicular to \vec{u} .

Example: Let $\vec{u} = [1, 1]$ and $\vec{v} = [4, 2]$. Find vectors \vec{a} and \vec{b} so that $\vec{v} = \vec{a} + \vec{b}$, \vec{a} is parallel to \vec{u} , and \vec{b} is perpendicular to \vec{u} .

$$7a = Prij_{x}$$
 $7a = Prij_{x}$
 $7a = 14.7$
 $7a = 14.$

$$a+b=v$$
 $b=v-a$
 $b=[4,2]-[3,3]$
 $b=[1,-1]$

1.3 Lines and Planes

Part 1. Lines in \mathbb{R}^2

Definition: The general form of a line in \mathbb{R}^2 is ax + by = c

Example: Consider the line 3x + y = 1. Find two points on the line and graph the line.

Set
$$x=0$$
: $y=1$

Set $x=1$: $3+y=1$
 $y=-2$
 $Q=(1,-2)$

Definition: A **normal vector** is orthogonal to a given line. It is written \vec{n} . Its components are the coefficients from the general form.

Definition: The **normal form** of a line in \mathbb{R}^2 is $\vec{n} \cdot \vec{x} = \vec{n} \cdot \vec{p}$ where $\vec{x} = \begin{bmatrix} x \\ y \end{bmatrix}$ and \vec{p} is the vectorization of any point on the line.

Example: Describe the line 3x + y = 1 in normal form. Show that expanding normal form gives general form.

hornal form $\vec{n} \cdot \vec{\chi} = \vec{n} \cdot \vec{p}$ and point line $\begin{bmatrix} 3 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} \chi \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \end{bmatrix}$ general form $3\chi + y = 1$

Definition: A direction vector for a line is $\vec{d} = \overrightarrow{PQ}$, where P and Q are any two points on the line.

J Q

Definition: The **vector form** for a line in \mathbb{R}^2 is $\vec{x} = \vec{p} + t\vec{d}$, where t represents any real number.

Example: Describe the line 3x + y = 1 in vector form. Show that as t varies, the line is traced out.

2 points on the line:
$$P = (0, 1)$$

 $Q = (1, -2)$
direction vector $\vec{d} = \vec{P}Q$
 $= \begin{bmatrix} -3 \end{bmatrix}$ Think $Q - \vec{P}$
Vector form $\vec{x} = \vec{P} + t\vec{d}$
 $\vec{x} = \vec{P} + t\vec{d}$
 $\vec{y} = \vec{P} + t\vec{d}$
 $\vec{y} = \vec{P} + t\vec{d}$

Definition: The parametric form for a line in \mathbb{R}^2 is:

$$\begin{cases} x = a + bt \\ y = c + dt \end{cases}$$

Example: Describe the line 3x + y = 1 in parametric form.

Vector form
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
Expand:
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} t \\ -3t \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} t \\ 1-3t \end{bmatrix}$$
parametric form
$$\begin{cases} x = t \\ y = 1-3t \end{cases}$$

Comment: A given line can be described in a specific form in multiple ways, for example 3x + y = 1 and 6x + 2y = 2 are general forms for the same line.

Example: Summarize the four forms of a line in \mathbb{R}^2

$$3x+y=1$$

$$\vec{N} \cdot \vec{N} = \vec{N} \cdot \vec{p}$$

$$\begin{bmatrix} 3 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\vec{\chi} = \vec{p} + t\vec{d}$$
 $(\vec{y}) = (\vec{y}) + t(\vec{y})$

$$\int_{0}^{\infty} x = t$$

$$\int_{0}^{\infty} y = 1 - 3t$$