1.2 Length and Angle

Example: Let $\vec{u} = [1, 4, 2, -9]$ and $\vec{v} = [2, 3, -2, -1]$. Calculate the dot product $\vec{u} \cdot \vec{v}$

$$\overrightarrow{u} \cdot \overrightarrow{v} = 1(2) + 4(3) + 2(-2) + (-9)(-1)$$
= 19

Example: Calculate:

a)
$$[1,5] \cdot [2,-3]$$

$$= 1(2) + 5(-3)$$

= -13

b)
$$[1,5] \cdot [2,-3,0]$$

c)
$$[u_1, u_2] \cdot [u_1, u_2]$$

$$= u_1^2 + u_2^2$$

Fact: Three Properties of the Dot Product

Let \vec{u}, \vec{v} be in \mathbb{R}^n . Then:

- 1) $\vec{u} \cdot \vec{u} \geq 0$
- 2) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- 3) $\vec{u} \cdot \vec{u} = 0$ if and only if $\vec{u} = \vec{0}$

Example: Break Property 3 into two statements, and decide which is more obvious.

If
$$\vec{u} \cdot \vec{u} = 0$$
 then $\vec{u} = \vec{0}$.

(less obvious)

AND

If
$$\vec{u} = \vec{o}$$
 then $\vec{u} \cdot \vec{u} = 0$. (nore obvious)

Example: Simplify:

a)
$$(\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v})$$

 $= \vec{u} \cdot \vec{u} + \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} + \vec{v} \cdot \vec{v}$
 $= \vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} + \vec{v} \cdot \vec{v} + \vec{v} \cdot \vec{v}$

Tur is meaningless

b)
$$3\vec{u} \cdot (-2\vec{v} + 5\vec{w})$$

Definition: The **length** of \vec{v} is written $||\vec{v}||$. If $\vec{v} = [v_1, v_2, \dots, v_n]$ then $||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$.

Example: Draw a picture to show that in 2D this is the Pythagorean Theorem.

Example: Calculate:

a)
$$||[1,1,1,-2]||$$

$$=\sqrt{1+1+1+4}$$

b)
$$||[3,-1]||$$

c)
$$[3,-1] \cdot [3,-1]$$

$$= 9 + 1$$

Fact: $\vec{v} \cdot \vec{v} = ||\vec{v}||^2$ for all \vec{v}

Example: Let $\vec{v} = [v_1, v_2, v_3]$. Simplify $|| -3\vec{v}||$.

$$||-3\vec{v}|| = ||[-3\vec{v}_{1}, -3\vec{v}_{2}, -3\vec{v}_{3}]||$$

$$= \sqrt{9\vec{v}_{1}^{2} + 9\vec{v}_{2}^{2} + 9\vec{v}_{3}^{2}}$$

$$= \sqrt{9(\vec{v}_{1}^{2} + \vec{v}_{2}^{2} + \vec{v}_{3}^{2})}$$

$$= 3\sqrt{\vec{v}_{1}^{2} + \vec{v}_{2}^{2} + \vec{v}_{3}^{2}}$$

$$= 3||\vec{v}_{1}||$$

Fact: $||c\vec{v}|| = |c| \ ||\vec{v}||$ for all vectors \vec{v} and real numbers c.

Definition: A unit vector is a vector that has length one. Normalizing a vector \vec{v} means finding a unit vector in the same direction as \vec{v} .

Fact: The following vector has length one and the same direction as \vec{v}

(provided that $\vec{v} \neq \vec{0}$): $\vec{u} = \frac{1}{||\vec{v}||} \vec{v}$

Example: Normalize $\vec{v} = [4, -2, 1]$

$$||\vec{r}|| = \sqrt{16+4+1} = \sqrt{21}$$

$$\vec{L} = \frac{1}{||\vec{r}||} \vec{r}$$

$$= \frac{1}{\sqrt{21}} \vec{r} \quad \text{or} \quad \frac{1}{\sqrt{21}} \left[\frac{4}{7}, -2, 1 \right]$$

Definition: The **distance** between \vec{a} and \vec{b} is written $d(\vec{a}, \vec{b})$. It is calculated by $d(\vec{a}, \vec{b}) = ||\vec{a} - \vec{b}||$

Example: Draw a picture to illustrate the above formula.

$$d(\bar{a},\bar{b}) = ||\bar{a}-\bar{b}||$$

Example: Find the distance between $\vec{a} = [2, -1]$ and $\vec{b} = [3, -6]$

$$a-b = [-1, 5]$$

 $d(a,b) = ||a-b|| = \sqrt{26}$

Fact: The Triangle Inequality

For all \vec{u}, \vec{v} in \mathbb{R}^n : $||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$

When would $||\pi + || = ||\pi|| + ||\tau||$?

If π and π are pointing in the same direction.