13.3 Area and Volume by Double Integration

$$
A=\iint_{R} d A{ }_{R} d y d x \text { or } d x d y
$$

Volume under $z=f$, over R

$$
V=\iint_{R} f d A
$$

Volume between $z=z_{1}$ and $z=z_{2}$, over R

$$
\begin{aligned}
& \begin{array}{l}
z=z_{2} \\
z=z_{1}
\end{array} \\
& \quad V=\iint_{R}\left(z_{2}-z_{1}\right) d A
\end{aligned}
$$

Ex. Set up a double integral for the area bounded by $y=2 x^{2}$ and $y=x^{2}+4$

Intersection

$$
\begin{aligned}
y & =y \\
2 x^{2} & =x^{2}+4 \\
x^{2} & =4 \\
x & = \pm 2
\end{aligned}
$$

$$
\begin{aligned}
R: & 2 x^{2} \leq y \leq x^{2}+4 \\
& -2 \leqslant x \leqslant 2
\end{aligned}
$$

$$
\begin{aligned}
& A=\iint_{R} d y d x \\
& A=\int_{-2}^{2} \int_{2 x^{2}}^{x^{2}+4} d y d x
\end{aligned}
$$

Ex: Set op a double integral for the volume between $z=6$ and $z=x+1$, over the region bounded by $x=y^{2}$ and $y=x-2$

\[

\]

$$
\begin{aligned}
V & =\iint_{R}\left(z_{\text {top }}-z_{\text {bolt }}\right) d A \\
& =\iint_{R}(5-x) d x d y \\
& =\int_{-1}^{2} \int_{y^{2}}^{y+2}(5-x) d x d y
\end{aligned}
$$

Ex: Set up a double integral for the first-octant volume under $x+2 y+4 z=8$

$$
y
$$

$$
\begin{aligned}
x+2 y+4 z & =8 \\
4 z & =8-x-2 y \\
z & =2-\frac{x}{4}-\frac{y}{2}
\end{aligned} \left\lvert\, \leftarrow 口 \begin{aligned}
& V=\iint_{0}^{R} z d A \\
& = \\
& \int_{0}^{8} \int_{0}^{-\frac{x}{2}+4}\left(2-\frac{x}{4}-\frac{y}{2}\right) d y d x
\end{aligned}\right.
$$

