Quit tomorrow 31.8
Test Thwsday
31.1, 31.2, 31.4, 31.6-9 (7 Questions)

- Do Sung HW
- Practice Problems www.leahhoward.con

Omit 31.10 \#7
31.10 Cont'd

最

$$
\left\{\begin{array}{l}
x<0 \\
x=0 \\
x>0
\end{array}\right.
$$

Ex: $m=1 \mathrm{~kg}$
Air resistance $\beta=2 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$
Spring constant $k=4 \mathrm{~N} / \mathrm{m}$
No external force
Find equation of motion.

$$
m a=-\beta v-k x+f(t)
$$

Recall $x=$ displacement

$$
\begin{aligned}
& a=x^{\prime \prime} \\
& v=x^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& m x^{\prime \prime}=-\beta x^{\prime}-k x+f(t) \leftarrow \text { external force } \\
& 1 x^{\prime \prime}=-2 x^{\prime}-4 x+0 \\
& x^{\prime \prime}+2 x^{\prime}+4 x=0
\end{aligned}
$$

auxiliary equation

$$
\begin{aligned}
& m^{2}+2 n+4=0 \\
& n^{2}+2 n+4=0
\end{aligned}
$$

to avoid contusion with mass

$$
\begin{aligned}
& n=\frac{-2 \pm \sqrt{2^{2}-4 \cdot 1 \cdot 4}}{2} \rightarrow \alpha \pm \beta_{j} \\
& n=\frac{-2 \pm \sqrt{-12}}{2}=\sqrt{4} \sqrt{3} \sqrt{-1}=2 \sqrt{3} j \\
& n=\frac{-2 \pm 2 \sqrt{3} j}{2} \\
& n=-1 \\
& \beta=\sqrt{3} \quad y=e^{\alpha x}(
\end{aligned}
$$

Wart displacement x in terns of tome t

$$
\begin{aligned}
& x=e^{\alpha t}\left(c_{1} \cos \beta t+c_{2} \sin \beta t\right) \\
& x=e^{-t}\left(c_{1} \cos \sqrt{3} t+c_{2} \sin \sqrt{3} t\right)
\end{aligned}
$$

Ex: A 49 N weight stretches a spring 2.0 cm . 0.02 m The spring is pulled 20 cm longer than its equilibrium length and released.
There is no damping (no resistance) and there is no external force.
Find the equation of motion.
Formula sheet $m a=-\beta v-k x+f(t)$

$$
\begin{aligned}
& a=x^{\prime \prime} \\
& v=x^{1}
\end{aligned}
$$

Initial Goditions
when $t=0$:

$$
\begin{gathered}
\left.x=0.2 \mathrm{~m} \quad x^{\prime}=0 \quad \mathrm{~m}\right) \mathrm{m} \\
(\mathrm{n} / \mathrm{s})
\end{gathered}
$$

$$
5 x^{\prime \prime}=-2450 x
$$

auxiliary equation:

$$
\begin{aligned}
5 m^{2} & =-2450 \\
5 n^{2} & =-2450 \\
n^{2} & =-490 \\
n & = \pm \sqrt{-490}=\sqrt{490} \sqrt{-1} \\
n & = \pm \sqrt{490} j \\
o r \quad n & \approx \pm 22 j
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=0 \\
& \beta=22
\end{aligned}
$$

$$
y=e^{\alpha x}(\ldots
$$

$$
\begin{array}{rl}
x=e^{\alpha t}\left(c_{1} \cos \beta t+c_{2} \sin \beta t\right) \\
x=0.2: c_{1} \cos 22 t+c_{2} \sin 22 t \\
t=0 & 0.2=c_{1}(1)+c_{2}(0) \\
c_{1}=0.2 \\
x=0.2 \cos 22 t+c_{2} \sin 22 t \\
x^{\prime}=0: & x^{\prime}=0.2(-22 \sin 22 t)+22 c_{2} \cos 22 t \\
t=0: 0 & c_{2}=0 \\
& x=0.2 \cos 22 t
\end{array}
$$

No air resistance \Rightarrow Harmonic Motion
No external force \Rightarrow Harmonic Motion

