

silves
$$x^{2}y^{11} - 2xy^{1} - 4y = 0$$

Solution $y = C_{1}x^{-1} + C_{2}x^{4}$
 $y^{1} = -C_{1}x^{-2} + 4C_{2}x^{3}$
 $y^{1} = 2C_{1}x^{-3} + 12C_{2}x^{2}$
DE:
LS= $x^{2}y^{11} - 2xy^{1} - 4y$
 $= x^{2}(2C_{1}x^{-3} + 12C_{2}x^{2})$
 $-2x(-C_{1}x^{-2} + 4C_{2}x^{3})$
 $-4(C_{1}x^{-1} + 4C_{2}x^{4})$
 $= 2C_{1}x^{-1} + 12C_{2}x^{4}$
 $+ 2C_{1}x^{-1} - 8C_{2}x^{4}$
 $-4C_{1}x^{-1} - 4C_{2}x^{4}$
 $= 0C_{1}x^{-1} + 0C_{2}x^{4}$
 $= 0$
 $= RS$
D) IS y the general solution ?
General solution :
 $t = ot$ unknown Gritants in solution = order of DE
 $y = (T_{1}x^{-1} + C_{2}x^{4})$
 $t = cot = C$

Yes c) List some particular solutions (# of unknown Constants < order of DE) General Solution y= C, x + Czx4 Particular Solutions: y= 0 $y = 8x^4$ $y = -\sqrt{2} x^{-1}$ $y = \pi x' + ex^4$ $y = C_1 x^2 + 5x^4$ More about Cristants CI + Cz X + C3 X should be rewritten $= C_1 + (C_2 + C_3) \times$ $= C_1 + C_4 x$ Always collect like terms! Ex: How many Constants? $A + 1 + C_1 - 5x^2 + C_2x^2 + C_3 \ln x$ $= (A+1+C_1) + (-S+C_2) x^2 + C_3 ln x$

=
$$C_4 + C_5 x^2 + C_3 h x$$

[3]
Ex: The general solution of $y' - 3y = 6$
is $y^2 - 2 + Ce^{3x}$
Trind the particular solution if $y(0) = 7$ is represented
General Solution $y^2 - 2 + Ce^{3x}$
Sub $y^2 + \frac{1}{2} = 0$; $7 = -2 + C$
 $9 = C$
 $y = -2 + 9e^{3x}$