Quiz tomorrow 31.10

STUDY TIPS

- 1) Re-read lecture notes
- 2) Do Sugg HW when we finish a section

#1
$$dy - x^3 e^{4x} dx - \frac{3}{x} y dx = 0$$
LINEAR

1)
$$dy + P(x)ydx = Q(x)dx$$

$$dy - \frac{3}{x}ydx = x^3 e^{4x}dx$$

Z)
$$T.F. = e^{\int P(x)dx}$$

$$P(x) = -\frac{3}{x}$$

$$\int P(x)dx = -3\ln x$$

$$T.F. = e^{-3\ln x} = e^{\ln x^{-3}} = x^{-3}$$

3) Multiply Standard Form by I.F.

$$x^{-3}dy - 3x^{-4}ydx = e^{4x}dx$$

 $d(x^{-3}y) = e^{4x}dx$

4) Integrate:

$$\int d(x^{-3}y) = \int e^{4x} dx$$

$$x^{-3}y = \frac{e^{4x}}{4} + C$$
Solve by:

$$y = x^{3} \left(\frac{e^{4x}}{4} + C\right)$$

#2
$$\frac{dy}{dx} - \frac{y^2}{\sec 3x} = 0$$
 $y=3$ when $x = \frac{\pi}{6}$

Separable

$$\frac{dy}{dx} = \frac{y^2}{\sec 3x}$$

$$\frac{dy}{y^2 dx} = \frac{dx}{\sec 3x}$$

$$\int \frac{dy}{y^2} = \int \frac{dx}{\sec 3x}$$

$$\int y^2 dy = \int \frac{dx}{\sec 3x} dx$$

$$\int -y^{-1} = \frac{\sin 3x}{3} + C$$

$$\int y=3$$

$$\int -y^{-1} = \frac{\sin 3x}{3} + C$$

$$\int -y^{-1} = \frac{\sin 3x}{3} + C$$

$$\int -y^{-1} = \frac{\sin 3x}{3} + C$$

1. Cliection and Representation of Data Got'd

For large Samples, data is grouped

into classes.

 $-y^{-1} = \frac{\sin 3x}{3} - \frac{2}{3}$

Ex 1. Loudness of jet engines at takeoff (decibels): 102, 115, 93, 105, 108, 110, 120, 94, 101, 103, 92, 110, 109, 101, 115, 119, 95, 108, 98, 114 a) Create a frequency table with six classes b) Draw a histogram

a) decibel frequency = # of measurements

Min. value is 92 Max. " 120

values in the range = 120-92+1

Aside: 7,8,9 #Valus= 9-7+1

Add 91 to the data set

Now # values = 30

values in each class = 30 values = 5 values/class

decibels	frequency	
91-95	Ш	4
96-100	1)
101-105	100	S
106-110	Щ	5
111-115	111	3
116-120	K	2

b) Use middle of the class as the "class mark"

e.g.
$$\frac{91+95}{2} = 93$$

2. Summarizing Data

We describe centre with mean and median
" spread " standard deviation (SD)

Units of mean, median, SD are the same as original data.

The mean is the average value

mean = sun

n

of measurements

Data is assumed to be a population unless "sample" is specified.

Ex 1. Find the mean of the sample $11,9,17,19,4,15\,$

sample mean 5c = (11+9+...+15) = 12.5