Quiz tomorrow 31.10
Test Average $=75 \%$
Go over \#1, \#2
If exam grade $>$ tern mark then final grade = exam grade
STUDY TIPS

1) Re-read lecture notes
2) Do Jug HW when we finish a section
\#1 $\quad d y-x^{3} e^{4 x} d x-\frac{3}{x} y d x=0$
LINEAR
3)

$$
\begin{aligned}
& d y+P(x) y d x=Q(x) d x \\
& d y-\frac{3}{x} y d x=x^{3} e^{4 x} d x
\end{aligned}
$$

2)

$$
\begin{aligned}
& \text { IF. }=e^{\int P(x) d x} \\
& P(x)=-\frac{3}{x} \\
& \int P(x) d x=-3 \ln x \\
& \text { IF. }=e^{-3 \ln x}=e^{\ln x^{-3}}=x^{-3}
\end{aligned}
$$

3) Multiply Standard Form by I.F.

$$
\begin{gathered}
x^{-3} d y-3 x^{-4} y d x=e^{4 x} d x \\
d\left(x^{-3} y\right)=e^{4 x} d x
\end{gathered}
$$

4) Integrate:

$$
\begin{gathered}
\int d\left(x^{-3} y\right)=\int e^{4 x} d x \\
x^{-3} y=\frac{e^{4 x}}{4}+c
\end{gathered}
$$

Solve for y :

$$
y=x^{3}\left(\frac{e^{4 x}}{4}+c\right)
$$

\#2 $\frac{d y}{d x}-\frac{y^{2}}{\sec 3 x}=0$
$y=3$ when $x=\frac{\pi}{6}$
Separable

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{y^{2}}{\sec 3 x} \\
& \frac{d y}{y^{2} d x}=\frac{1}{\sec 3 x} \\
& \frac{d y}{y^{2}}=\frac{d x}{\sec 3 x} \\
& \int \frac{d y}{y^{2}}=\int \frac{d x}{\sec 3 x} \\
& \int y^{-2} d y=\int \cos 3 x d x \\
& \sec \theta=\frac{1}{\cos \theta} \\
& -y^{-1}=\frac{\sin 3 x}{3}+C \\
& \frac{1}{\sec \theta}=\cos \theta \\
& \begin{array}{l}
y=3 \\
x=\frac{\pi}{6}
\end{array} \text { : } \\
& -\frac{1}{3}=\frac{\sin ^{\prime}\left(\frac{\pi}{2}\right)}{3}+C \\
& -\frac{2}{3}=C \\
& -y^{-1}=\frac{\sin 3 x}{3}-\frac{2}{3}
\end{aligned}
$$

1. Election and Representation of Data Cant'd

For large samples, data is grouped into classes.

Ex 1. Loudness of jet engines at takeoff (decibels):
$102,115,93,105,108,110,120,94,101,103$,
$92,110,109,101,115,119,95,108,98,114$
a) Create a frequency table with six classes
b) Draw a histogram

a) decibel | frequency |
| :--- |
| measwements |

\rightarrow	
\rightarrow	
\rightarrow	
\rightarrow	

Min. value is 92
Max. 11120
$\begin{aligned} \text { \# values in the range } & =120-92+1 \\ & =29\end{aligned}$

$$
\begin{gathered}
\text { Aside: } \\
7,8,9 \\
\text { \#values }=9-7+1
\end{gathered}
$$

Add 91 to the data set
Now \#values $=30$
\# values in each class $=\frac{30 \text { values }}{6 \text { classes }}=S$ values $/ \mathrm{class}$

decibels	frequency	
$91-95$	1111	4
$96-100$	1	1
$101-105$	11111	5
$106-110$	1111	5
$111-115$	111	3
$116-120$	11	2

b) Use middle of the class as the "class mark" e.g. $\frac{91+95}{2}=93$

2. Summarizing Data

We describe centre with mean and median "spread "standard deviation (SD)

Whits of mean, median, SD are the same as original data.

The mean is the average value

$$
\text { mean }=\frac{\text { sum }}{n}
$$

\# of measwernents
Notation:
μ is the population mean
\bar{x} " sample mean
Data is assured to be a population unless "sample" is specified.
sample mean $\bar{x}=\frac{(11+9+\ldots+15)}{6}=12.5$

