DOL
www. leahhoward.6m

Grades and Cowsepack Videos, Lecture Notes

Math 193

1. Integration (Theory)
2. Differential Equations (Applications) e.g. Spring-mass systems
3. Statistics (Applications)
28.1 General Power Formula

RECAP

$f(x)$	$f^{\prime}(x)$
x^{-2}	$-2 x^{-3}$
$x^{4 / 3}$	$\frac{4}{3} x^{1 / 3}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec ^{2} x$
$\sec x$	$\sec x \tan x$
$\csc x$	$-\csc x \sec x$
$\cot x$	$-\csc ^{2} x d x=\tan x+C$
$\cos ^{-1}-1$	1

$\sin ^{-1} x$	$\cos ^{-1} x$
$\tan ^{-1} x$	$\frac{1}{\sqrt{1-x^{2}}}$
$\frac{-1}{\sqrt{1-x^{2}}}$	
$\frac{1}{1+x^{2}}$	
$\ln (2 x+1)$	$\frac{1}{2 x+1} \cdot 2$
$e^{7 x}$	
$e^{h(x)}$	$\frac{1}{g(x)} \cdot g^{\prime}(x)$
$7 \cdot e^{7 x}$	
$h^{\prime}(x) \cdot e^{h(x)}$	

Suggestion: Make flashcards

$$
\int u^{n} d u=\frac{u^{n+1}}{n+1}+C \quad(n \neq-1)
$$

Quick Ex:
a) $\int u^{-3} d u=\frac{u^{-2}}{-2}+C$
b) $\int u^{2 / 3} d u=\frac{3}{5} u^{5 / 3}+C$

Ex: $\quad \int \sqrt{\sin x} \cos x d x$

$$
\begin{aligned}
& u=\sin x \\
& d u=\cos x d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int \sqrt{u} d u \\
& =\int u^{1 / 2} d u \\
& =\frac{2}{3} u^{3 / 2}+C \\
& =\frac{2}{3}(\sin x)^{3 / 2}+C \text { or } \frac{2}{3} \sin ^{3 / 2} x+C
\end{aligned}
$$

Note: Can't integrate $\int \sqrt{\sin x} d x$
Ex: Evaluate $\int_{0}^{\pi / 16} \sin 4 x \underbrace{\cos 4 x d x}$

$$
\begin{aligned}
u & =\sin 4 x \\
d u & =4 \cos 4 x d x \\
\frac{d u}{4} & =\cos 4 x d x \\
\text { when } x & =0, u=\sin 0=0
\end{aligned}
$$

$$
\begin{aligned}
&= \int_{0}^{\frac{1}{\sqrt{2}}} \frac{u d u}{4} \\
&=\frac{1}{4} \int_{0}^{\frac{1}{\sqrt{2}}} u d u \\
&=\frac{1}{4}\left[\frac{u^{2}}{2}\right]_{0}^{\frac{1}{\sqrt{2}}} \quad N_{0}+C \\
&=\frac{1}{4}\left[\frac{1}{2}\left(\frac{1}{\sqrt{2}}\right)^{2}-0\right] \\
&=\frac{1}{4} \cdot \frac{1}{4}
\end{aligned}
$$

$$
=\frac{1}{16}
$$

RECAP

SOHCA HTOA

$$
\tan \frac{\pi}{3}=\frac{0}{A}=\frac{\sqrt{3}}{1}=\sqrt{3}
$$

$$
\sec \frac{\pi}{4}=\frac{H}{A}=\frac{\sqrt{2}}{1}=\sqrt{2}
$$

$$
\begin{array}{ll}
\sin \pi=0 & (y \text {-value }) \\
\cos \pi=-1 & (x \text {-value })
\end{array}
$$

