Statistics: Collection,
Analysis and
Interpretation of Data

1. Collection and Representation of Data

Population: set of all measurements of interest

Sample: a subset of the population

Ex: Population: salaries of all engineers in Canada (\$)

Sample = Salaries of 30 chosen engineers

Samples should be representative of the population.

Ex: Want to know it Canadians want lower taxes

a) Poll 10 people in I neighbourhood hot a representative sample

b) Poll 1000 people across the Country, in whan and rural areas

[more representative of all Canadians]

Ex: Population = {A,B,C,D} Find all samples of size 2 [A,B], {A,C], {A,D], {B,C], {B,D], {C,D}}

The number of different samples of size of that can be chosen from a population of size n is written nor "n choose r"

on calculator: 42nd F Incr 2 = 6

Ex: Now many samples of size 10 can be closen from a population of 100 measurements? $100000 \approx 1.7 \times 10^{13}$

How to select samples? Handout

EX: Sample 50 people

Now many siblings do they have?

#siblings | frequency = | # of three

the measurement

O | 11

23

2 | 12

3 | 1

#siblings	relative frequency	Toll
Ø	50 = 0,22	I measurements
7	= 0.46 = 0.246	Total # of
3	0.24	heaverents N=to

Relative Frequency Histogram:

For large samples, clata is grouped into <u>classes</u>.

Ex: Loudnes, of jet engines at takeoft (decibels)

102, 115, 93, 105, 108, 110, 120, 94, 101, 103, 92, 110, 109, 101, 115, 119, 95, 108, 98, 114

a) Create a frequency table with 6 classes

Min: 92

Max: 120

#value in range = 120-92 +1 = 29 Bump up to 30 by adding "91" to data set

valves/class = 30 = 5

decibel	1 freq	nery
91-95	1111	4
96-100		1
101-105	11111	5
106-110	11111	5
111-112	111	3
116-120	11	2

b) Draw histogram
Use middle of class as the "class mark"

91+95 = 93

96+100 = 98 etc.

Appendix A in Suggested Problems:
instructions for making
histograms in Excel
(won't be tested)

SAMPLING METHODS

1) SIMPLE RANDOM SAMPLE: Every measurement in the population has equal probability of being chosen.

Ex: To form a random student committee, assign each student a number and use a calculator's random number generator to select students.

2) STRATIFIED RANDOM SAMPLE: The population is divided into sub-populations, then a random sample is selected from each subpopulation.

Ex: Thirty percent of ball bearings at a factory have 5mm radius and the other 70% have 10mm radius. Say we want a random sample of 50 ball bearings. Take a random sample of 15 of the 5mm ball bearings and a random sample of 35 of the 10mm ball bearings.

Comment: 0.3(50) = 15 and 0.7(50) = 35

3) CLUSTER SAMPLE: Divide the population into clusters and take a random sample of the clusters. ALL measurements in the chosen clusters are included in the sample.

Ex: To form a sample of buildings in Victoria, let the city blocks represent the clusters. Take a random sample of the city blocks; all buildings in the chosen blocks are included in the sample.

4) 1-in-k SYSTEMATIC SAMPLE: Randomly select one of the first k measurements in the population and every k-th measurement thereafter.

Ex: Ball bearings #3,23,43,63,... from a production line form a 1-in-20 systematic sample.

Comments: The random starting point makes this a random sample. Avoid patterns when choosing k, e.g. all ball bearings produced by same machine.

Ex: Identify the sampling method:

a) A lightbulb company makes 60W and 100W bulbs; 80% are 60W and the rest are 100W. A random sample of 40 of the 60W bulbs is selected, together with a random sample of 10 of the 100W bulbs.

stratified random sample

b) Engineers in a large city want to perform a random check on red-light cameras in 85 different neighbourhoods. A random sample of 10 neighbourhoods is selected and every red-light camera in the chosen neighbourhoods is inspected.

cluster sample

c) A random number generator is used to select 12 of 100 shipments for quality-control testing.

simple random sample

d) Starting with the 11th part, every 25th part coming off the production line is selected for further inspection.

1-in-25 systematic sample