MATH 191 Review Problems

1. Evaluate $\lim _{x \rightarrow-8} \frac{x^{2}+5 x-24}{5 x+40}$.
2. Find $f^{\prime}(x)$ using the limit definition of the derivative: $f(x)=\sqrt{2 x+1}$.
3. Find $\left.y^{\prime}\right|_{x=2}$ for $y=(2 x+1)^{\frac{2}{3}}\left(x^{3}-3 x^{2}\right)$. Give an exact value.
4. Find $\frac{d y}{d x}$ for $y=\frac{8 x^{2}+3}{5 x+1}$. Simplify.
5. Find y^{\prime} given $\cos (x y)-\sin (3 y)=1+x^{3}$.
6. Find the equation of the tangent line to $y=\ln \left[x^{3}\left(x^{2}+4\right)\right]$ at $x=1$. Write your answer in slope-intercept form.
7. We want to solve $e^{x}=\cos x+1$. Use Newton's Method with $x_{1}=-3$ to find x_{2}. Round your answer to 2 decimal places.
8. An object's position (in metres) is given by: $x=e^{-t^{2}+8 t}, y=t e^{7 t}$. Find its velocity at $t=0.2$ seconds. Round to 1 decimal place.
9. Water is stored in a cone-shaped container with height 14 m and radius 5 m . The water is dripping out of a small hole in the bottom at a rate of $2 \mathrm{~m}^{3} / \mathrm{h}$. At what rate is the water's depth changing when the depth is 6 m ?
10. For the function $f(x)=x^{8}-4 x^{6}$:
(a) Find all relative maximum or minimum points.
(b) Find all points of inflection.
11. A rectangular box's length is two times its width. The width, length and height of the box add up to 140 cm . Find the maximum volume of the box.
12. Approximate $\sin \left(\frac{5 \pi}{18}\right)$ using linear approximation or differentials.
13. Find $f^{\prime}\left(\frac{\pi}{6}\right)$ for $f(x)=\csc ^{2}(2 x)+\tan ^{-1}(5 x)$. Round to 1 decimal place.
14. Find $f^{\prime}(0)$ for $f(x)=\log _{2}\left(x^{2}+5 x+1\right)+2^{4 x}$. Simplify.
15. Integrate the following:
(a) $\int 2 x^{2} \sqrt{1-4 x^{3}} d x$
(c) $\int_{0}^{1} \frac{3 x^{4}}{\left(1+7 x^{5}\right)^{2}} d x$
(b) $\int \frac{2 x-1}{x^{3}} d x$
(d) $\int\left(3 t^{2}+1\right)^{2} d t$
16. Use Simpson's Rule with $n=4$ to approximate $\int_{0}^{1} \sin x^{3} d x$.
17. Find the displacement $s(t)$ of an object if its acceleration is given by $a=12 t \mathrm{~m} / \mathrm{s}^{2}$, its initial velocity is $5 \mathrm{~m} / \mathrm{s}$ and its initial displacement is 0 m .
18. Find the area between the line $y=x-1$ and the graph of $y^{2}=2 x+6$.

19. Find the volume of the solid of revolution generated by rotating the region bounded by $y=x^{3}, x=0$, and $y=8$ around the x-axis.
20. Find the centroid of the region bounded by $y=\sqrt{x}, x=4$ and $y=0$.
21. The cable of a bridge can be described by the equation $y=0.04 x^{3 / 2}$ from $x=0$ to $x=100 \mathrm{~m}$. Find the length of the cable.
22. (a) Find the inverse of $\left[\begin{array}{ccc}1 & 2 & -3 \\ 2 & 3 & -4 \\ 3 & 0 & 1\end{array}\right]$
(b) Use part (a) to solve the system below:

$$
\begin{aligned}
x+2 y-3 z & =-11 \\
2 x+3 y-4 z & =-14 \\
3 x+z & =9
\end{aligned}
$$

from 22b)
23. Solve the system using Gauss-Jordan Elimination:

