1. [3 marks] The temperature at noon (in  $^{\circ}C$ ) was recorded at a specific location on 20 different days.



a) State whether the data is symmetrical, skewed left or skewed right.

skewed left

b) State whether the data is unimodal or bimodal.

Unimodal

- c) On what percentage of days was the temperature at noon between  $8^{\circ}C$  and  $10^{\circ}C$ ?  $\frac{2}{2^{\circ}} = 0$ ,  $|=|0^{\circ}/_{\circ}|$
- 2. [3 marks] A population's mean is equal to 7 and its standard deviation is equal to 2. Find:
- a) The new mean if we add 5 to every measurement.

7+5=12

b) The new standard deviation if we add 5 to every measurement.

2

c) The new mean if we multiply every measurement by 5.

7(5)=35

3. [3 marks] Fifty students were polled on whether they like Walking or not, and whether they like hiking or not. The number of students in each category appears below.

|                 | Likes Walkin | Dislikes Walking |  |
|-----------------|--------------|------------------|--|
| Likes Hiking    | 28           | 7 J              |  |
| Dislikes Hiking | 4            | 11               |  |

Find the probability that:

a) a student dislikes Walking

c) a student likes hiking or likes Valking

$$\frac{4+28+7}{50} = \frac{39}{50}$$

4. [2 marks] The population below has a mean of 17. Find x. 6, 21, x, 13

$$A = 17$$

$$6 + 21 + 21 + 13 = 17$$

$$6 + 21 + 21 + 13 = 68$$

$$21 + 40 = 68$$

$$21 = 28$$

5. [3] marks] A population has  $\mu=50$  and  $\sigma=8$ . Find the range in which at least 93.75% of the measurements fall.

TckebySheft

6. [4 marks] A population has  $\mu = 60$  and  $\sigma = 6$  and the population is **mound-shaped**. Approximately what percentage of measurements fall in the range  $54 \le x \le 66$ ?

Empirical

$$M+k\sigma = 66$$
  
 $60+k(6)=66$   
 $k(6)=6$   
 $k=1$ 

The range is M-KoEXEM+Ko M-OEXEM+O

Approximately 68%

7. [3 marks] Alice ran two races this year. For each race the following data is provided: Alice's time, the mean of all the runners' times, and the standard deviation of all the runners' times (all measured in minutes).

|        | Alice's Time | $\mu$ | $\sigma$ |
|--------|--------------|-------|----------|
| Race 1 | 55           | 70    | 5        |
| Race 2 | 27           | 35    | 4        |

a) Calculate Alice's z-score for Race 1.

$$z = x - M = ss - 30 = -3$$

b) Calculate Alice's z-score for Race 2.

$$z = \frac{\chi - \mu}{\sigma} = \frac{27 - 37}{4} = -2$$

c) In which race did Alice have the fastest time relative to the other runners?

Case-sensitive alphaneric: 0,...,9,9,9,...,2,4,...,2
62 symbols

Lotal # of passwords = 62<sup>4</sup>

# of passwords with no number = 52<sup>4</sup>

# of passwords with at teast one number

= 62<sup>4</sup>-52<sup>4</sup>

= 7, 464,720