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Chapter 1

Binary, Octal, and
Hexadecimal

1.1 Decimal and Octal

1.1.1 Review of the Decimal System

Before we look at the numbering systems commonly used by computers,
it will likely be helpful to review the workings of the decimal system, the
numbering system commonly used by humans. The decimal system (base
10) is based on ten digits, starting from zero, and uses a positional notation,
so called because the magnitude of the number depends not only on what
digits are used, but also where each digit is located within the number.

For example, if we start counting from zero upwards, we get

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Notice that in base ten, we don’t have a single digit to denote the number
ten. Instead, we write a zero in the right column and then write a one in
the column to the left. Similarly, when we continue counting up to twenty,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20

once we have written the number nineteen as 19, the next number sets the
right digit to zero while incrementing the left column by one to give the
number 20 (twenty).

1
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This means that for the the decimal number 179, the digit 9 is in the “ones”
place, the digit 7 is in the “tens” place, and the digit 1 is in the “hundreds”
place, so we can write

179 = 1× 100 + 7× 10 + 9× 1

or

179 = 1× 102 + 7× 101 + 9× 100,

recalling that 100 = 1.

Example: In the decimal number 386, state which digit is in
the

(a) ones place

(b) tens place

(c) hundreds place

Answer:

(a) 6, since it’s the right-most digit

(b) 8

(c) 3

Example: In the decimal number 24680, in what place are the
following digits?

(a) 8

(b) 6

(c) 0

(d) 2

(e) 4

Answer:

(a) the tens place

(b) the hundreds place

(c) the ones place

(d) the ten thousands place
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(e) the thousands place

1.1.2 Bases Other Than Ten – How They Work

To put a number into a base other than ten, we use the same ideas as before:

� the number of digits available is equal to the base

� there is no single digit which represents the base, so in order to write
the base in that system, set the right column to zero and increment
the column to the left by one

The best way to understand this is to work through an example, so let us
first look at numbers written in base 4. This base is not commonly used
in computing, but it is a useful example nonetheless. We will use the same
ideas as before:

� there are four digits in total: 0,1,2,3

� there is no single digit which represents the base, so when we want to
write the number “four”, set the right column to zero and increment
the column to the left by one

To make it clear which base we are using, any numbers written in a base
other than ten will have the base as a subscript. So the number three in
base 4 is 34.

Let’s contrast counting using base 10 versus base 4 by counting from one
to twenty in both bases side-by-side. Notice that the default base is 10, so
numbers in the decimal system are written without a subscript, but numbers
in base 4 have the base as a subscript.
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base 10 base 4

1 14

2 24

3 34

4 104

5 114

6 124

7 134

8 204

9 214

10 224

base 10 base 4

11 234

12 304

13 314

14 324

15 334

16 1004

17 1014

18 1024

19 1034

20 1104

Another thing to note is what happens when we try to write the decimal
number 16 in base 4. The previous number, 15, is written as 334. When
you add one to 334, the three in the right-hand column increments to four,
but since that is the base, we write a zero and add one to the next column
over. Since that is also a three, we set that column to zero and write a one
in the next column, so that 16 = 1004.

So, looking at the number 14 in decimal, we can think of it as

14 = 1× 10 + 4× 1

but that same number written in base 4 is

324 = 3× 4 + 2× 1

and since 12 + 2 is 14, you can see that the two numerical representations
are equivalent.

In the same way that we expanded 179 earlier as

179 = 1× 102 + 7× 101 + 9× 100,

we can expand numbers in base 4 in the same way by replacing the base 10
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with the base 4. So

1004 = 1× 42 + 0× 41 + 0× 40

= 1× 16 + 0× 4 + 0× 1

= 16 + 0 + 0

= 16

and we can conclude that 1004 = 1610, as we discussed.

Similarly,

3024 = 3× 42 + 0× 41 + 2× 40

= 3× 16 + 0× 4 + 2× 1

= 48 + 0 + 2

= 50

and we can conclude that 3024 = 5010.

Example: In the number 1324, state which digit is in the

(a) ones place

(b) fours place

(c) sixteens place

Answer:

(a) 2

(b) 3

(c) 1

Example: The number 12304 can be expanded in base 10 as

12304 = 1× 43 + 2× 42 + 3× 41 + 0× 40

= 64 + 32 + 12 + 0

= 108

Expand the following numbers into base 10 in a similar fashion.
Then perform that calculation to find the number when written
in decimal form.
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(a) 234

(b) 1214

(c) 301024

(d) 21324

Answer:

(a) 234 = 2× 41 + 3× 40 = 8 + 3 = 11

(b) 1214 = 1× 42 + 2× 41 + 1× 40 = 16 + 8 + 1 = 25

(c) 301024 = 3 × 44 + 0 × 43 + 1 × 42 + 0 × 41 + 2 × 40 =
768 + 0 + 16 + 0 + 2 = 786

(d) 21324 = 2×43+1×42+3×41+2×40 = 128+16+12+2 = 158

1.1.3 Octal

Let us now look at numbers written in base 8, called octal. Octal is a base
commonly used in computing. We will use the same ideas as before:

� there are eight digits in total: 0,1,2,3,4,5,6,7

� there is no single digit which represents the base, so when we want to
write the number “eight”, set the right column to zero and increment
the column to the left by one

So, in base 8, we can only count to seven using single digits:

0, 1, 2, 3, 4, 5, 6, 7

and then the number after that is 10 (in base 8). To make it clear which
base we are using, any numbers written in a base other than ten will have
the base as a subscript. So the number eight in base 8 is 108.

Let’s contrast counting using base 10 versus base 8 by counting from one to
twenty in both bases side-by-side. Again, the numbers in octal will have the
base as a subscript.
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base 10 base 8

1 18

2 28

3 38

4 48

5 58

6 68

7 78

8 108

9 118

10 128

base 10 base 8

11 138

12 148

13 158

14 168

15 178

16 208

17 218

18 228

19 238

20 248

So, looking at the number 14 in decimal, we can think of it as

14 = 1× 10 + 4× 1

but that same number written in octal is

168 = 1× 8 + 6× 1

and since 8 + 6 is 14, you can see that the two numerical representations
are equivalent.

In the same way that we expanded 179 earlier as

179 = 1× 102 + 7× 101 + 9× 100,

we can expand numbers in octal in the same way by replacing the base 10
with the base 8.

So

2458 = 2× 82 + 4× 81 + 5× 80

= 2× 64 + 4× 8 + 5× 1

= 128 + 32 + 5

= 165

and we can conclude that 2458 = 16510.
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Example: In the number 1357248, state which digit is in the

(a) ones place

(b) eights place

(c) sixty-fours place

(d) 85 place

Answer:

(a) 4

(b) 2

(c) 7

(d) 1

Example: The number 123458 can be expanded in base 10 as
1× 84 + 2× 83 + 3× 82 + 4× 81 + 5× 80. Expand the following
numbers into base 10 in a similar fashion. Then perform that
calculation to find the number when written in decimal form.

(a) 418

(b) 7648

(c) 10118

(d) 250738

Answer:

(a) 418 = 4× 81 + 1× 80 = 32 + 1 = 33

(b) 7648 = 7× 82 + 6× 81 + 4× 80 = 448 + 48 + 4 = 500

(c) 10118 = 1×83+0×82+1×81+1×80 = 512+0+8+1 = 521

(d) 250738 = 2 × 84 + 5 × 83 + 0 × 82 + 7 × 81 + 3 × 80 =
8192 + 2560 + 0 + 56 + 3 = 10811

Example: Use the technique of the previous example to expand
the following numbers with different bases into base 10. Then
perform that calculation to find the number when written in
decimal form.

(a) 2103
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(b) 110012

(c) 41356

(d) 2667

Answer:

(a) 2103 = 2× 32 + 1× 31 + 0× 30 = 18 + 3 + 0 = 21

(b) 110012 = 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =
16 + 8 + 0 + 0 + 1 = 25

(c) 41356 = 4×63+1×62+3×61+5×60 = 864+36+18+5 = 923

(d) 2667 = 2× 72 + 6× 71 + 6× 70 = 98 + 42 + 6 = 146
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Exercises for Section 1.1

Consider the table below.

base 10 base 2 base 3 base 4 base 5 base 6 base 7 base 8

1 14

2 24

3 34

4 104

5 114

6 124

7 134

8 204

9 214

10 224

11 234

12 304

13

14

15

16

17

18

19

20

For the following exercises, complete the specified column in this table. The
fourth column has been started as an example.

1. base 2

2. base 3

3. base 4

4. base 5
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5. base 6

6. base 7

7. base 8

In the number 1234567810, in what place are the following digits?

8. 8

9. 6

10. 5

11. 7

12. 2

13. 1

In the number 12345678, which digit is in the

14. ones place?

15. eights place?

16. sixty-fours place?

17. 85 place?

The number 123458 can be expanded in base 10 as 1 × 84 + 2 × 83 + 3 ×
82+4× 81+5× 80. Expand the following numbers into base 10 in a similar
fashion.

18. 5238

19. 10111102

20. 220134

21. 41305

22. 98710
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Convert the following numbers to base 10:

23. 72318

24. 20314

25. 1008

26. 10058

27. 20348
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Answers to Section 1.1 Exercises

Here is the table for questions 1-7:

base 10 base 2 base 3 base 4 base 5 base 6 base 7 base 8

1 12 13 14 15 16 17 18

2 102 23 24 25 26 27 28

3 112 103 34 35 36 37 38

4 1002 113 104 45 46 47 48

5 1012 123 114 105 56 57 58

6 1102 203 124 115 106 67 68

7 1112 213 134 125 116 107 78

8 10002 223 204 135 126 117 108

9 10012 1003 214 145 136 127 118

10 10102 1013 224 205 146 137 128

11 10112 1023 234 215 156 147 138

12 11002 1103 304 225 206 157 148

13 11012 1113 314 235 216 167 158

14 11102 1123 324 245 226 207 168

15 11112 1203 334 305 236 217 178

16 100002 1213 1004 315 246 227 208

17 100012 1223 1014 325 256 237 218

18 100102 2003 1024 335 306 247 228

19 100112 2013 1034 345 316 257 238

20 101002 2023 1104 405 326 267 248

8. ones

9. hundreds

10. thousands

11. tens
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12. millions

13. ten millions

14. 7

15. 6

16. 5

17. 2

18. 5238 = 5× 82 + 2× 81 + 3× 80

19. 10111102 = 1× 26 +0× 25 +1× 24 +1× 23 +1× 22 +1× 21 +0× 20

20. 220134 = 2× 44 + 2× 43 + 0× 42 + 1× 41 + 3× 40

21. 41305 = 4× 53 + 1× 52 + 3× 51 + 0× 50

22. 98710 = 9× 102 + 8× 101 + 7× 100

23. 72318 = 3737

24. 20314 = 141

25. 1008 = 64

26. 10058 = 517

27. 20348 = 1052
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1.2 Binary and Hexadecimal

1.2.1 Binary

Let us now look at base 2, called binary. We will use the same ideas as
before:

� there are two digits in total: 0,1

� there is no single digit which represents the base, so when we want to
write the number “two”, set the right column to zero and increment
the column to the left by one

So, in base 2, we can only count to one using single digits:

0, 1

and then the number after that is 102. To make it clear which base we are
using, any numbers written in a base other than ten will have the base as a
subscript. Let’s contrast counting using base 10 versus base 2 by counting
from one to twenty in both bases side-by-side.

base 10 base 2

1 12

2 102

3 112

4 1002

5 1012

6 1102

7 1112

8 10002

9 10012

10 10102

base 10 base 2

11 10112

12 11002

13 11012

14 11102

15 11112

16 100002

17 100012

18 100102

19 100112

20 101002

So, in order to convert the binary number 1102 to decimal, we can be expand
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it as

1102 = 1× 22 + 1× 21 + 0× 20

= 1× 4 + 1× 2 + 0× 1

= 4 + 2

= 6

and so we can conclude that 1102 = 610. Similarly, the number 101002 can
be expanded as

101002 = 1× 24 + 0× 23 + 1× 22 + 0× 21 + 0× 20

= 1× 16 + 0× 8 + 1× 4 + 0× 2 + 0× 1

= 16 + 4

= 20

and 101002 = 2010.

You can see that numbers in binary don’t have to be very large before they
get quite difficult to read. That is why we generally write numbers in a
computing context in bases that are powers of two, like octal, rather than
in binary, even though computers themselves only use ones and zeros. We
will see in Section 1.5 how to quickly convert back and forth between binary,
octal, and hexadecimal.

Example: In the following binary numbers, in what place is the
underlined number?

(a) 111001

(b) 111001

(c) 111001

(d) 111001

Answer:

(a) the ones place

(b) the twos place

(c) the eights place (the 23s place)
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(d) the thirty-twos place (the 25s place)

Example: Convert the following numbers to base 10.

(a) 112

(b) 110102

(c) 10101012

Answer:

(a) 112 = 1× 21 + 1× 20

= 1× 2 + 1× 1

= 2 + 1

= 3

(b) 110102 = 1× 24 + 1× 23 + 0× 22 + 1× 21 + 0× 20

= 1× 16 + 1× 8 + 0× 4 + 1× 2 + 0× 1

= 16 + 8 + 0 + 2 + 0

= 26

(c) 10101012 = 1× 26 + 0× 25 + 1× 24 + 0× 23 + 1× 22 + 0× 21 + 1× 20

= 1× 64 + 0× 32 + 1× 16 + 0× 8 + 1× 4 + 0× 2 + 1× 1

= 64 + 0 + 16 + 0 + 4 + 0 + 1

= 85

1.2.2 Hexadecimal

Another common base used in computing is base 16, called hexadecimal.
We will use the same ideas as before:

� there are sixteen digits in total

� there is no single digit which represents the base, so when we want to
write the number “sixteen”, set the right column to zero and increment
the column to the left by one

The problem arises that in base 10, we have ten digits to use, but we need
another six in order to count in hexadecimal. Rather than going with new
symbols that might be hard to remember, we use some familiar ones in a
very recognizable order:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F
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and then the number after that, corresponding to sixteen, is 1016.

Let’s contrast counting using base 10 versus base 16 by counting from one
to twenty in both bases side-by-side.

base 10 base 16

1 116

2 216

3 316

4 416

5 516

6 616

7 716

8 816

9 916

10 A16

base 10 base 16

11 B16

12 C16

13 D16

14 E16

15 F16

16 1016

17 1116

18 1216

19 1316

20 1416

So the number 1416 can be expanded as

1416 = 1× 161 + 4× 160

= 1× 16 + 4× 1

= 16 + 4

= 20

and 1416 = 2010.

Example: In the number 13579BDF16, in what place are the
following digits?

(a) 1

(b) D

(c) F

(d) 5

Answer:

(a) the 167s place



1.2. BINARY AND HEXADECIMAL 19

(b) the sixteens place

(c) the ones place

(d) the 165s place

Example: The number 1234E16 can be expanded in base 10 as
1 × 164 + 2 × 163 + 3 × 162 + 4 × 161 + 14 × 160 (recall that
in hexadecimal, the digit E16 = 1410). Expand the following
numbers into base 10 in a similar fashion.

(a) A116

(b) BB816

(c) C1D116

(d) 1FFFFD16

Answer:

(a) A116 = 10× 161 + 1× 160

(b) BB816 = 11× 162 + 11× 161 + 8× 160

(c) C1D116 = 12× 163 + 1× 162 + 13× 161 + 1× 160

(d) 1FFFFD16 = 1 × 165 + 15 × 164 + 15 × 163 + 15 × 162 +
15× 161 + 13× 160

Example: Convert the following numbers to base 10:

(a) 9F016

(b) DE4CD16

Answer:

(a) 9F016 = 9× 162 + 15× 161 + 0× 160

= 2304 + 240

= 2544

(b) DE4CD16 = 13× 164 + 14× 163 + 4× 162 + 12× 161 + 13× 160

= 851968 + 57344 + 1024 + 192 + 13

= 910541
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Exercises for Section 1.2

In the following binary numbers, in what place is the underlined number?

1. 100101011

2. 100101011

3. 100101011

4. 100101011

5. 100101011

The number 111102 can be expanded in base 10 as 1 × 24 + 1 × 23 + 1 ×
22+1× 21+0× 20. Expand the following numbers into base 10 in a similar
fashion. Then perform that calculation to convert the number to base 10.

6. 102

7. 1112

8. 10112

9. 11101112

Convert the following numbers to base 10.

10. 10012

11. 101100012

12. 101012

In the number 1C3D0216, in what place are the following digits?

13. 2

14. 0

15. D

16. 3

17. C

18. 1

The number 1234516 can be expanded in base 10 as 1× 164 + 2× 163 + 3×
162 + 4 × 161 + 5 × 160. Expand the following numbers into base 10 in a
similar fashion. You do not need to do the full calculation.
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19. 52316

20. F216

21. 2A01316

22. BEAD16

23. 9C816

Convert the following numbers to base 10.

24. AC88216

25. 100016

26. 2CF16

27. BB816

28. 7AAA0116

29. 65ABF16
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Answers to Section 1.2 Exercises

1. the twos place

2. the ones place

3. the 64s place (26)

4. the 256s place (28)

5. the sixteens (24) place

6. 102 = 1× 21 + 0× 20

= 2 + 0

= 2

7. 1112 = 1× 22 + 1× 21 + 1× 20

= 4 + 2 + 1

= 7

8. 10112 = 1× 23 + 0× 22 + 1× 21 + 1× 20

= 8 + 0 + 2 + 1

= 11

9. 11101112 = 1× 26 + 1× 25 + 1× 24 + 0× 23 + 1× 22 + 1× 21 + 1× 20

= 64 + 32 + 16 + 0 + 4 + 2 + 1

= 119

10. 10012 = 9

11. 101100012 = 177

12. 101012 = 21

13. ones

14. sixteens

15. 162

16. 163

17. 164

18. 165

19. 52316 = 5× 162 + 2× 161 + 3× 160
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20. F216 = 15× 161 + 2× 160

21. 2A01316 = 2× 164 + 10× 163 + 0× 162 + 1× 161 + 3× 160

22. BEAD16 = 11× 163 + 14× 162 + 10× 161 + 13× 160

23. 9C816 = 9× 162 + 12× 161 + 8× 160

24. AC88216 = 706690

25. 100016 = 4096

26. 2CF16 = 719

27. BB816 = 3000

28. 7AAA0116 = 8038913

29. 65ABF16 = 416447
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1.3 Converting Non-Integer Numbers to Decimal

1.3.1 Review of the Decimal System for Non-Integers

Let’s once again review the the decimal system, but this time we will consider
non-integer numbers. Recall that integers are numbers that can be written
without a fractional part, like 5, −3, and 0. To write non-integer numbers
as a decimal, we again use positional notation, where the fractional part is
to the right of the decimal point.

For example, if we consider the base-10 number

8.76

then the dot is called the decimal point, the digit to the immediate left (8)
is in the “ones” place, and the first digit to the right (7) is in the “tenths”
place, while the second digit to the right (6) is in the “hundredths” place.
So this number is equal to

8.76 = 8 +
7

10
+

6

100
.

Recalling that 1
10 can be written as 10−1, then we can rewrite this as

8.76 = 8× 100 + 7× 10−1 + 6× 10−2,

which is another way of saying that

8.76 = 8 + 0.7 + 0.06

which may seem redundant but this representation will come in handy when
looking at non-decimal bases.

Example: In the decimal number 38.6, state which digit is in
the

(a) tens place

(b) ones place

(c) tenths place
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Answer:

(a) 3

(b) 8, since it is to the left of the decimal point

(c) 6

Example: In the decimal number 2.4608, in what place are the
following digits?

(a) 6

(b) 2

(c) 0

(d) 8

(e) 4

Answer:

(a) the hundredths place

(b) the ones place

(c) the thousandths place

(d) the ten thousandths place

(e) the tenths place

1.3.2 Non-Integers in Bases Other Than Ten

When we consider a number such as

10.0112

we immediately run into a naming problem. We can no longer call the dot
the “decimal point”, as this is not a decimal number. For this particular
example, we can call the dot the “binary point”, and in general, the dot is
called the “radix point”.

Now, the digits to the left of the binary point make up the integer part of
the number as before, and the digits to the right make up the fractional
part.
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Let’s look at a number in base 4, so we’re not getting confused with all of
the zeros and ones. If we consider

20.314

we see that the two digits to the left of the radix point, 2 and 0, make up
the integer part, while the 3 and the 1 make up the fractional part. Using
positional notation, the 3 is in the “fourths” place while the 1 is in the
“sixteenths” place. We have seen before that 204 = 2× 41 + 0× 40, so now

20.314 = 2× 41 + 0× 40 + 3× 4−1 + 1× 4−2

or if you prefer

20.314 = 2× 4 + 0 +
3

4
+

1

42
.

Writing these numbers in their decimal equivalents, we see that

20.314 = 8 + 0 + 0.75 + 0.0625

= 8.812510

Similarly,

F2.B916 = 15× 161 + 2× 160 + 11× 16−1 + 9× 16−2

= 15× 16 + 2× 1 +
11

16
+

9

162

= 240 + 2 + 0.6875 + 0.035156

= 242.72265625

and we can conclude that F2.B916 = 242.7226562510.

Example: In the number 30.1C16, state which digit is in the

(a) sixteens place

(b) sixteenths place

Answer:

(a) 3
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(b) 1

Example: The number 1230.14 can be expanded in base 10 as

1230.14 = 1× 43 + 2× 42 + 3× 41 + 0× 40 + 1× 4−1

= 64 + 32 + 12 + 0 + 0.25

= 108.25

Expand the following numbers in a similar fashion. Then per-
form that calculation to find the number when written in decimal
form. If appropriate, round your answer to three decimal places.

(a) 101.0112

(b) 12.178

(c) 0.FE16

(d) 2132.435

Answer:

(a) 101.0112 = 1×22+0×21+1×20+0×2−1+1×2−2+1×2−3 =
5.375

(b) 12.178 = 1× 81 + 2× 80 + 1× 8−1 + 7× 8−2 = 10.234

(c) 0.FE16 = 0× 160 + 15× 16−1 + 14× 16−2 = 0.992

(d) 2132.435 = 2×53+1×52+3×51+2×50+4×5−1+3×5−2 =
292.92
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Exercises for Section 1.3

In the number 123.4567810, in what place are the following digits?

1. 3

2. 6

3. 5

4. 7

5. 2

6. 1

In the number 1234.5678, which digit is in the

7. ones place?

8. eighths place?

9. eights place?

10. sixty-fourths place?

11. sixty-fours place?

Convert the following numbers to base 10. When appropriate, round to 3
decimal places.

12. 72.318

13. 203.14

14. 100.1112

15. 100.57

16. 20C4.B716
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Answers to Section 1.3 Exercises

1. ones

2. thousandths

3. hundredths

4. ten thousandths

5. tens

6. hundreds

7. 4

8. 5

9. 3

10. 6

11. 2

12. 58.391

13. 35.25

14. 4.875

15. 49.714

16. 8388.715
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1.4 Converting from Decimal

As we’ve seen, converting from a different base back to decimal form can be
done by expansion:

3168 = 3× 82 + 1× 81 + 6× 80

= 3× 64 + 1× 8 + 6× 1

= 192 + 8 + 6

= 206

but how do we go back the other way? In order to do that, we first need to
look at some modular arithmetic.

1.4.1 Modular Arithmetic: Finding Quotient and Remain-
der

Suppose we wish to divide one integer by another. If the second integer
doesn’t divide into the first evenly, the result is a real number which we can
report either in fraction or decimal form. For example, if we divide 13 by 5,
we get

13÷ 5 =
13

5
= 2

3

5
= 2.6

However, if for some reason we wish to stay in the land of integers, we could
also report the result by saying that 13 divided by 5 equals 2 plus 3 left
over. In this example, the 2 is called the quotient and the 3 is called the
remainder, and we can write this calculation in the following form:

13 = 2︸︷︷︸
quotient

×5 + 3︸︷︷︸
remainder

This sort of calculation is very helpful when doing unit conversions.1 For
example, if we know that a certain length of time is 54 hours long and we

1The metric system has reduced the need for this type of calculation, but since we are
still stuck with practical units that are not multiples of 10 (time given in days, hours, and
minutes, for example), doing this type of conversion is still, alas, necessary.
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would prefer to give it in terms of days and hours, then

54 hours = days︸︷︷︸
quotient

×24 + hours︸ ︷︷ ︸
remainder

= 2× 24 + 6

so 54 hours = 2 days plus 6 hours.

But how can we find quotients and remainders with a standard scientific
calculator?2 If we take the number 54 and divide it by 24, our calculator
will tell us 2.25. There are then two ways to go:

1. Take the integer part of 2.25, which is 2. Then perform the following
calculation:

remainder = 54− 2︸︷︷︸
integer part

×24

= 54− 48

= 6

2. Alternatively, you can take the decimal part of 2.25, which is 0.25.
Multiply this number by 24, the number you are dividing by.

remainder = 0.25︸︷︷︸
decimal part

×24

= 6

Example: Find the quotient and remainder for the following.

(a) 25÷ 4

(b) 86÷ 3

(c) 101÷ 12

(d) 91÷ 8

2If you wanted to this in code, most computer languages have built-in functions trunc()
and mod():

days = trunc(54,24)

hours = mod(54,24)

where trunc() comes from the word truncate, meaning “to shorten something by cutting
off the end” and mod() comes from the mathematical word modulus.
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Answer:

(a) 25÷ 4 = 6.25
quotient = integer part of 6.25 = 6
remainder = 25− 6︸︷︷︸

integer part

×4 = 1

or remainder = 0.25︸︷︷︸
decimal part

×4 = 1

(b) quotient = 28, remainder = 2

(c) quotient = 8, remainder = 5

(d) quotient = 11, remainder = 3

1.4.2 Using Quotient and Remainder to Convert from Dec-
imal Form

Now that we know how to find quotients and remainders, let’s look at some
examples that convert from a decimal number into octal. Consider the
number 3168. We earlier found that 3168 = 20610. Let’s now go back the
other way, using repeated division and remainders.

Example: Convert the decimal number 206 to octal.

Answer: The procedure is to divide 206 by the base, which in
this case is 8, and write down the quotient and remainder. Then
divide the quotient by the base, and write down the new quotient
and remainder. As you can see below, we first divide 206 by 8 to
get a quotient of 25 with remainder 6. If we then divide 25 by
8, we get quotient 3 with remainder 1. We continue doing this
until we get a quotient of zero, as in the table below.

quotient remainder

206÷ 8 = 25 6

25÷ 8 = 3 1

3÷ 8 = 0 3

Notice that if you write down the remainders in reverse order,
you get the octal number 3168. Nifty!

Let’s do some more examples using this same procedure.
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Example: Convert the decimal number 41 to binary.

Answer:
quotient remainder

41÷ 2 = 20 1

20÷ 2 = 10 0

10÷ 2 = 5 0

5÷ 2 = 2 1

2÷ 2 = 1 0

1÷ 2 = 0 1

and reading the remainders from bottom to top gives 4110 =
1010012.

Example: Convert the decimal number 24362 to hexadecimal.

Answer:
quotient remainder remainder

(base 10) (base 16)

24362÷ 16 = 1522 10 A

1522÷ 16 = 95 2 2

95÷ 16 = 5 15 F

5÷ 16 = 0 5 5

and 2436210 = 5F2A16.

1.4.3 Converting Non-integer Numbers from Decimal Form

We have just seen that to convert an integer number from decimal form,
we divide by the base repeatedly. To convert the fractional part of a non-
integer decimal number to another base, we instead will multiply by the
base repeated.

Example: Convert the decimal number 0.59375 to octal.

Answer: The procedure is to multiply the decimal number by the
base, and split the result into the integer part and the fractional
(decimal) part. Then take the fractional/decimal part and write
it on the next line. Multiply it by 8, and split as before. Once the
fractional part goes to zero, you can stop. Finally, write down the
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integer parts from top to bottom after the radix point and add
the subscript for the base.

integer fractional

0.59375× 8 = 4 + 0.75

0.75× 8 = 6 + 0

and reading the integer parts from top to bottom gives 0.5937510 =
0.468.

Example: Convert the decimal number 0.625 to binary.

Answer:
integer fractional

0.625× 2 = 1 + 0.25

0.25× 2 = 0 + 0.5

0.5× 2 = 1 + 0

and reading the integer parts from top to bottom gives 0.62510 =
0.1012.

Example: Convert the decimal number 0.6328125 to hexadeci-
mal.

Answer:
integer fractional

0.6328125× 16 = 10 (A) + 0.125

0.125× 16 = 2 + 0

and reading the integer parts from top to bottom gives 0.632812510 =
0.A216.

Let’s do an example with a twist.

Example: Convert the decimal number 0.3 to octal.
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Answer:
integer fractional

0.3× 8 = 2 + 0.4

0.4× 8 = 3 + 0.2

0.2× 8 = 1 + 0.6

0.6× 8 = 4 + 0.8

0.8× 8 = 6 + 0.4

You’ll notice that we have a bit of a problem: if we put the
fractional/decimal part 0.4 on the next line, then we’ll have a
repeat of the second line, and then the next three lines will also
repeat, and so on. What this means is that 0.310 is a repeating
decimal in octal: 0.310 = 0.23146314631463146... = 0.231468.

Finally, what if we are converting a non-integer number that has both an
integer part and a fractional part? The answer is to do the two parts sepa-
rately and then put them together.

Example: Convert the decimal number 17.375 to binary.

Answer: First, we’ll do the integer part and convert 1710 to
binary.

quotient remainder

17÷ 2 = 8 1

8÷ 2 = 4 0

4÷ 2 = 2 0

2÷ 2 = 1 0

1÷ 2 = 0 1

So 1710 = 100012.

Now, convert 0.37510 to binary.

integer fractional

0.375× 2 = 0 + 0.75

0.75× 2 = 1 + 0.5

0.5× 2 = 1 + 0
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So 0.37510 = 0.0112.

Putting it all together, we get that 17.37510 = 10001.0112.
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Exercises for Section 1.4

Convert the following decimal numbers to the indicated base.

1. 23 to octal

2. 12 to binary

3. 48 to hexadecimal

Convert the decimal number 1234 to the following bases.

4. binary

5. octal

6. hexadecimal

7. base 7

Convert the following decimal numbers to the indicated base.

8. 7203 to octal

9. 123 to binary

10. 11331 to hexadecimal

Perform the following conversions for non-integer numbers. Give exact an-
swers (do not round off).

11. 0.359375 to octal

12. 0.8125 to binary

13. 0.234375 to hexadecimal

Perform the following conversions for non-integer numbers. Use the repeater
bar in your answer.

14. 0.6 to octal

15. 0.3 to binary

16. 0.36 to hexadecimal

Perform the following conversions. Give exact answers (do not round off).

17. 18.125 to hexadecimal

18. 31.6 to base 4
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19. 37.875 to octal

20. 23.35 to binary
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Answers to Section 1.4 Exercises

1. 23 = 278

2. 12 = 11002

3. 48 = 3016

4. 1234 = 100110100102

5. 1234 = 23228

6. 1234 = 4D216

7. 1234 = 34127

8. 7203 = 160438

9. 123 = 11110112

10. 11331 = 2C4316

11. 0.278

12. 0.11012

13. 0.3C16

14. 0.46318

15. 0.010012 (if you don’t notice the repeating pattern immediately, the
answers 0.0100112, 0.01001102, etc., are also acceptable)

16. 0.5C28F 16

17. 12.216

18. 133.214

19. 45.78

20. 10111.0101102
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1.5 Converting between Binary, Octal, and Hex-
adecimal

1.5.1 Converting Between Binary and Octal

Let’s first count from zero to seven in both octal and binary.

octal binary

08 02

18 12

28 102

38 112

48 1002

58 1012

68 1102

78 1112

If we add leading zeros where necessary to bring all binary numbers to three
digits, we can see that

68 = 1102

38 = 0112

48 = 1002

The reason we are doing this is that if we look at a number expressed both
in octal and binary, such as 6348 = 1100111002, we can see an interesting
pattern. If the binary number is split into groups of three, starting from the
right-hand-side,

6348 = 1100111002

= 110 011 1002

=

6︷︸︸︷
110

3︷︸︸︷
011

4︷︸︸︷
100 2

then we can see that each group of three digits is equal to the corresponding
octal number in that place. Nifty, no?

Let’s use this observation to convert from octal to binary.



42 CHAPTER 1. BINARY, OCTAL, AND HEXADECIMAL

Example: Convert the following octal numbers to binary:

(a) 238

(b) 6718

Answer:

(a) So for each digit in the octal number, write the correspond-
ing 3-digit binary number. Then put the groups of three all
together and drop any leading zeros.

238 =

2︷︸︸︷
010

3︷︸︸︷
011 2

= 010 0112

= 10 0112, dropping the leading zero

(b) 6718 =

6︷︸︸︷
110

7︷︸︸︷
111

1︷︸︸︷
001 2

= 110 111 0012

You can also remove the spaces if you wish, but keeping
them makes the binary number a little easier to read.

The same technique can be used to convert non-integer octal numbers to
binary.

Example: Convert the following octal numbers to binary:

(a) 0.328

(b) 16.078

Answer:

(a) For each digit in the octal number, write the corresponding
3-digit binary number. Then put the groups of three all
together and drop any leading zeros to the left of the binary
point and any trailing zeros to the right of the radix point.

0.328 = 0.

3︷︸︸︷
011

2︷︸︸︷
010 2

= 0.011 0102

= 0.011 012, dropping the trailing zero
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(b) 16.078 =

1︷︸︸︷
001

6︷︸︸︷
110 .

0︷︸︸︷
000

7︷︸︸︷
111 2

= 001 110.000 1112

= 1 110.000 1112

And we can use a similar technique to convert from binary to octal.

Example: Convert the following binary numbers to octal:

(a) 111102

(b) 10100001002

Answer: First, group the binary digits into threes, starting from
the radix point and moving outwards. Add leading zeros as ap-
propriate. Then rewrite each set of three into the corresponding
digit in octal.

(a) 111102 = 011 110.2 =

3︷︸︸︷
011

6︷︸︸︷
110 2 = 368

(b) 10100001002 = 001 010 000 100.2 =

1︷︸︸︷
001

2︷︸︸︷
010

0︷︸︸︷
000

4︷︸︸︷
100 2 =

12048

The reason we want to group from the radix point instead of just saying
“group from the right” is that we want to expand this idea to include non-
integer conversions.

Example: Convert the following binary numbers to octal:

(a) 11.112

(b) 1100.1101012

Answer: First, group the binary digits into threes, starting from
the radix point, adding extra leading and/or trailing zeros as ap-
propriate. Then rewrite each set of three into the corresponding
digit in octal.

(a) 11.112 = 011.1102 =

3︷︸︸︷
011 .

6︷︸︸︷
110 2 = 3.68

(b) 1100.1101012 = 001 100.110 1012 =

1︷︸︸︷
001

4︷︸︸︷
100 .

6︷︸︸︷
110

5︷︸︸︷
101 2 =

14.658
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1.5.2 Converting Between Binary and Hexadecimal

Similarly, let’s first count from zero to fifteen in both hexadecimal and bi-
nary.

hexadecimal binary

016 02

116 12

216 102

316 112

416 1002

516 1012

616 1102

716 1112

hexadecimal binary

816 10002

916 10012

A16 10102

B16 10112

C16 11002

D16 11012

E16 11102

F16 11112

If we add leading zeros where necessary to bring all binary numbers to four
digits, we can see that

916 = 10012

D16 = 11012

216 = 00102

Then if we look at the number 9D216 written in binary, and split the digits
into groups of four,

9D216 =

9︷︸︸︷
1001

D︷︸︸︷
1101

2︷︸︸︷
00102

= 1001 1101 00102

Once again, we can remove the spaces from the binary number if we wish,
but keeping them makes the number easier to read. Grouping the digits
of binary numbers in either groups of two or three is acceptable, always
remembering to start from the radix point and work outward.

Let’s work through more examples.

Example: Convert the following hexadecimal numbers to bi-
nary.
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(a) 3A16

(b) F02C16

(c) 2B.B616

(d) 4C.70A16

Answer:

(a) 3A16 =

3︷︸︸︷
0011

A︷︸︸︷
10102

= 11 10102 , dropping the leading zeros

(b) F02C16 =

F︷︸︸︷
1111

0︷︸︸︷
0000

2︷︸︸︷
0010

C︷︸︸︷
11002

= 1111 0000 0010 11002

(c) 2B.B616 =

1︷︸︸︷
0010

B︷︸︸︷
1011 .

B︷︸︸︷
1011

6︷︸︸︷
01102

= 10 1011.1011 0112 , dropping the leading and trailing zeros

(d) 4C.70A16 =

4︷︸︸︷
0100

C︷︸︸︷
1100 .

7︷︸︸︷
0111

0︷︸︸︷
0000

A︷︸︸︷
10102

= 100 1100.0111 0000 1012

Example: Convert the following binary numbers to hexadeci-
mal.

(a) 111102

(b) 10100011112

(c) 101010.0101012

Answer: First, group the binary digits into fours, starting from
the radix point. Then rewrite each set of four into the corre-
sponding digit in hexadecimal.

(a) 111102 = 1 11102 =

1︷︸︸︷
1

14︷︸︸︷
11102 = 1E16

(b) 10100011112 = 10 1000 11112 =

2︷︸︸︷
10

8︷︸︸︷
1000

15︷︸︸︷
11112 = 28F16
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(c) 101010.0101012 = 10 1010.0101 012 =

2︷︸︸︷
10

A︷︸︸︷
1010 .

5︷︸︸︷
0101

4︷︸︸︷
01002 =

2A.5416

1.5.3 Converting Between Octal and Hexadecimal

The fastest way to do this is to convert into binary first, then regroup the
binary digits.

Example: Convert the following octal numbers to hexadecimal.

(a) 728

(b) 3338

(c) 55.068

Answer:

(a) 728 =

7︷︸︸︷
111

2︷︸︸︷
010 2 , giving you groups of 3

= 1110102

= 11 10102 , changing to groups of 4

=

3︷︸︸︷
11

A︷︸︸︷
10102

= 3A16

(b) 3338 =

3︷︸︸︷
011

3︷︸︸︷
011

3︷︸︸︷
011 2

= 011 011 0112

= 110110112

= 1101 10112

=

D︷︸︸︷
1101

B︷︸︸︷
10112

= DB16
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(c) 55.068 =

5︷︸︸︷
101

5︷︸︸︷
101 .

0︷︸︸︷
000

6︷︸︸︷
110 2

= 101 101.000 1102

= 101101.0001102

= 10 1101.0001 102

=

2︷︸︸︷
0010

D︷︸︸︷
1101 .

1︷︸︸︷
0001

8︷︸︸︷
10002

= 2D.1816

Example: Convert the following hexadecimal numbers to octal.

(a) 9A16

(b) 4E5916

(c) 8.EEF16

Answer:

(a) 9A16 =

9︷︸︸︷
1001

A︷︸︸︷
10102

= 100110102

= 10 011 0102

=

2︷︸︸︷
10

3︷︸︸︷
011

2︷︸︸︷
010 2

= 2328

(b) 4E5916 =

4︷︸︸︷
0100

E︷︸︸︷
1110

5︷︸︸︷
0101

9︷︸︸︷
10012

= 0100 1110 0101 10012

= 1001110010110012

= 100 111 001 011 0012

=

4︷︸︸︷
100

7︷︸︸︷
111

1︷︸︸︷
001

3︷︸︸︷
011

1︷︸︸︷
001 2

= 471318
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(c) 8.EEF16 =

8︷︸︸︷
1000 .

E︷︸︸︷
1110

E︷︸︸︷
1110

F︷︸︸︷
11112

= 1000.1110 1110 11112

= 1000.1110111011112

= 1 000.111 011 101 1112

=

1︷︸︸︷
001

0︷︸︸︷
000 .

7︷︸︸︷
111

3︷︸︸︷
011

5︷︸︸︷
101

7︷︸︸︷
111 2

= 10.73578
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Exercises for Section 1.5

Convert the following octal numbers to binary:

1. 1138

2. 20.18

3. 11048

Convert the following hexadecimal numbers to binary:

4. 2B16

5. 3C.C16

6. 29A16

Convert the following binary numbers to octal:

7. 11002

8. 10011002

9. 11011.10012

Convert the following binary numbers to hexadecimal:

10. 100112

11. 10000002

12. 1.1011112

Convert the following octal numbers to hexadecimal:

13. 1.68

14. 1428

15. 24.578

16. 50028

Convert the following hexadecimal numbers to octal:

17. C.216

18. 1D0716

19. A.2E616
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Perform the following conversions for non-integer numbers:

20. E.1516 to binary

21. 4.7028 to binary

22. 10.0112 to hexadecimal

23. 110.12 to octal

24. 7B.B16 to octal

25. 4.17028 to hexadecimal
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Answers to Section 1.5 Exercises

1. 1138 = 10010112

2. 20.18 = 10 000.0012

3. 11048 = 10010001002

4. 2B16 = 1010112

5. 3C.C16 = 11 1100.112

6. 29A16 = 10100110102

7. 11002 = 148

8. 10011002 = 1148

9. 11011.10012 = 33.448

10. 100112 = 1316

11. 10000002 = 4016

12. 1.1011112 = 1.BC16

13. 1.68 = 1.C16

14. 1428 = 6216

15. 24.578 = 14.BC16

16. 50028 = A0216

17. C.216 = 14.18

18. 1D0716 = 164078

19. A.2E616 = 12.13468

20. E.1516 = 1110.0001 01012

21. 4.7028 = 100.111 000 012

22. 10.0112 = 2.616

23. 110.12 = 6.48

24. 7B.B16 = 173.548

25. 4.17028 = 4.3C216
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Mixed Practice

Convert the following numbers to the indicated base. Give exact answers
unless directed otherwise. Show your work.

1. 5B216 to binary

2. 0.1216 to decimal

3. 5392 to octal

4. 19.5625 to binary

5. 11010.010112 to octal

6. 703.18 to decimal

7. 0.33 to hexadecimal

8. 33.728 to hexadecimal

9. 44.025 to decimal

10. 101010.012 to hexadecimal

11. 44.02 to base 5

12. 262.8125 to octal
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Answers

1. 101 1011 00102 (the spacing is not necessary, but it makes the result
easier to read)

2. 0.0703125

3. 124208

4. 10011.10012

5. 32.268

6. 451.125

7. 0.547AE116

8. 1B.E816

9. 24.08

10. 2A.416

11. 134.0025

12. 406.648



Chapter 2

Logic

2.1 Introduction to Logic

2.1.1 Propositions

In logic, a proposition is a statement that is either true or false but not
both. The statement must also be unambiguous.

Examples of statements that are propositions:

(a) Trevor Noah is the host of the Daily Show on the Comedy Network.

(b) Lego Star Wars is a video game.

(c) The number π is exactly equal to 3.

A proposition can clearly be false, as in the last statement, while still being
a proposition. Examples of statements that are not propositions:

(a) Will you do your homework tonight?

(b) Please pass the butter.

(c) She was late for class this morning.

The first is not a proposition because questions cannot be propositions.
(Note that the answer to the question may very well be a proposition.)
The second one is a command and cannot be said to be either true or
false. The third of these examples is not a proposition because, taking the
statement on its own, the truth value depends on who “she” is. If, however,
that statement were expanded to become, “My roommate’s name is Laura

55



56 CHAPTER 2. LOGIC

and she was late for class this morning,” then “she” is clearly defined to be
Laura and the whole sentence is a proposition.

Taking this idea one step further, we can consider “she” in the third example
to behave like a variable, and whether the full statement “she was late” is
true or false must depend on what the value of the variable “she” is. Sim-
ilarly, in programming it is very common to evaluate the value (true/false)
of propositions like “x = 3” or “y < 5” in statements like:

if x = 3 then print ‘‘Hello World’’

provided that, like she/Laura, the value of x has previously been defined.

Since writing propositions out using English sentences is unwieldy, we fre-
quently use variables to denote propositions. In symbolic logic, we usually
use the letters p, q, r, s, t, etc., for propositions. Each of these variables
can then have one of two values, true or false. For example, let p = “Lego
Star Wars is a video game” and q = “The number π is exactly equal to
3.” In this instance, the proposition p is true, since there is a video game
called Lego Star Wars and the proposition q is false, since π is the irrational
number 3.1415926. . . which does not repeat and does not terminate.

2.1.2 Operators

“not”

The negation of any proposition p is called “not p” and is written using
the tilde symbol, ∼p. The tilde can be found on a standard keyboard as the
shifted key to the left of the 1. You may also see negations in logic written
using this symbol, ¬p, or using a bar or overline, p. In computing, you will
also see !p as the negation. We will use the ∼p notation because it uses a
character on a conventional keyboard, so is easier to type.

Note that you should be a little careful when negating sentences. For ex-
ample, the negative of “Pat is happy” is not “Pat is unhappy”. There are
many other emotions that Pat could have (anger, fear, boredom, etc.). If
the first statement is false, then its negation must be true, so between the
two you need to cover all possible situations that could arise. It would be
safe to say that the negation of “Pat is happy” is that “Pat is not happy”,
though.
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Example: Are these two sentences negatives of each other?

� “The number of students in Math 155 is even.”

� “The number of students in Math 155 is odd.”

Answer: Yes, these two are negatives of each other. Since we
never have fractions of students in class, the number of students
must be either zero or a natural number (in other words, a whole
number). Since whole numbers and natural numbers are either
even or odd, these two sentences cover all bases and are negatives
of each other. (Yes, zero is an even number.)

Example: Are these two sentences negatives of each other?

� “Pat’s Visa account balance is positive.”

� “Pat’s Visa account balance is negative.”

Answer: No, these two statements are not negatives of each
other. There is a third possible case, “Pat’s Visa account balance
is zero”, since zero is an unsigned number. So the two statements
above don’t cover all options. However, if the second statement
read “Pat’s Visa account balance is negative or zero”, then the
second statement would be the negation of the first one.

2.1.3 Combining Two or More Propositions Using Connec-
tives

Propositions may be combined using logical operators called connectives,
and the result is called a compound proposition. There are three basic
connectives that we will study: “and”, “or”, and “exclusive or”. (Oddly
enough, the “not” operator is also called a connective, even though it acts
on only one entity rather than joining two.)

“and”

If we connect the propositions p and q with “and” (also called the con-
junction), then “p and q” is true if both p and q are true. The symbol for
“and” is ∧, so “p and q” is written p ∧ q.

Example: Under what conditions is the statement “Pat does
her marking and goes to a movie” true?
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Answer: “Pat does her marking and goes to a movie” is true if
and only if Pat both does her marking and goes to a movie. If
she does one or the other but not both, then the statement
“Pat does her marking and goes to a movie” is false. It’s also
false if she does neither action.

“or”/“inclusive or”

If we connect the propositions p and q with “or” (also called the inclusive
disjunction), then “p or q” is true if either p or q or both are true. The
symbol for “or” is ∨, so “p or q” is written p ∨ q.

Example: Under what conditions is the statement “Pat does
her marking or goes to a movie” true?

Answer: “Pat does her marking or goes to a movie” is true if
and only if at least one of the conditions is true. If she does
her marking, then the compound proposition is true whether
or not she goes to a movie, and if she goes to a movie, then the
statement is true whether or not she does her marking. To really
spell it out, “Pat does her marking or goes to a movie” is true if
any of the following are true:

� Pat does her marking and also goes to a movie

� Pat does her marking but does not go to a movie

� Pat does not do her marking but does go to a movie

The only way “Pat does her marking or goes to a movie” is false
only when Pat does not do her marking and does not go to a
movie.

“XOR”/“exclusive or”

If we connect the propositions p and q with “exclusive or” (also called the
exclusive disjunction and frequently written as XOR), then “p XOR q” is
true if either p or q but not both are true. The symbol for “exclusive or”
is ⊕, so “p XOR q” is written p⊕ q.

“or” vs. “XOR”

In ordinary English, the word “or” can mean either the “inclusive or” or the
“exclusive or”, and it is usually up to the reader/listener to decide which
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one was meant from the context.

Example: Which “or” is meant in the following English sen-
tences/phrases?

(a) “Would you like milk or sugar in your tea?”

(b) “Wanted dead or alive”

Answer: For (a), the answer could easily be “milk”, “sugar”,
“both”, or “neither”. Since “both” is an option, “inclusive or”
is clearly meant.

For (b), the person who is wanted in one of these two states will
either be dead or alive but not both, so “exclusive or” is the best
interpretation.1

To unambiguously state which “or” is meant in English, the word “or” can
be replaced by slightly wordier constructions. The sentence “Would you like
milk or sugar or both in your tea?” makes it clear that the “inclusive or”
is meant. Replacing “or” by “and/or” has the same result. Using “either
. . . or” or the phrase “but not both” are signals that the “exclusive or” is
meant.

In general, if a statement is ambiguous, it is best to seek clarification. If
that is not possible, then assuming that “or” means the “inclusive or” is
generally the safest bet. For the rest of this course, we will use “or” to mean
the “inclusive or”.

Example: Under what conditions is the statement “Pat does
her marking or goes to a movie but not both” true?

Answer: “Pat does her marking or goes to a movie but not both”
is true if and only if only one of the conditions is true. If she
does her marking, then she cannot also go to a movie. If she goes
to a movie, then she cannot also do her marking. The exclusive
or means that she cannot do both and she cannot do neither.

Logical Propositions and the Order of Operations

When you are doing arithmetic, to evaluate the expression

4 + 3× 22

1Unless, of course, there is a zombie apocalypse.
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you need to know which operation (addition, multiplication, exponentiation)
should come first. In the same way, there is an order of operations in logic:

� negation, ∼, is done first

� “and”, ∧, is done next

� “or”, ∨, is done last

and brackets () override the default order. If you like, you can think of “not”
like exponents, “and” like multiplication, and “or” like addition (more on
this later).

To evaluate the proposition p ∨ q ∧ r, you would note that “and”, ∧, comes
before “or”, so you’d evaluate q∧r first, and then “or” it with p. So p∨q∧r
is the same as p ∨ (q ∧ r).

To evaluate the proposition ∼q∧p, you’d negate the q first, and then “and”
with p. So ∼q ∧ p is the same as (∼q) ∧ p. If you want the “and” to come
first, then override with brackets: ∼(q ∧ p). We note that ∼q ∧ p is not the
same as ∼(q ∧ p).

We will be practicing this skill once we get to truth tables.
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Exercises for Section 2.1

State whether the following sentences are propositions.

1. On September 6, 2006, mathematicians proved that 232582657 − 1 was
a prime number.

2. Will you marry me?

3. Python is her favourite computing language.

4. What is your favourite computing language?

5. Please bring me a textbook.

6. The University of Victoria is located in Alberta.

Let p be “Rich is seven feet tall” and q be “Susan has brown hair.” Translate
the following English sentences into logical notation.

7. Rich is seven feet tall or he is seven feet tall.

8. Either Rich is not seven feet tall or Susan does not have brown hair.

9. It is not true that Rich is seven feet tall or Susan has brown hair.

10. Rich is seven feet tall and Susan has brown hair.

11. Either Rich is seven feet tall or Susan does not have brown hair, but
not both.

Which type of “or”, inclusive or exclusive, is meant in the following English
sentences?

12. Do you want to sit inside or outside?

13. Have you seen the latest Harry Potter or Transformers movie?

14. I think I’ll get an A or a B in the course.

15. Is that the correct answer or not?

16. We need someone who speaks French or German.
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Let p be “The moon is made of green cheese” and q be “The earth is made
of green cheese.” Translate the following English sentences into logical no-
tation.

17. Either the moon is made of green cheese or both the moon and the
earth are made of green cheese.

18. The earth is made of green cheese and either the earth or the moon is
made of green cheese.

19. Either the earth is made of green cheese while the moon is not, or the
moon is made of green cheese.

20. The earth is made of green cheese and either the moon is made of
green cheese or the earth is not.

Let p = “Jane did her homework” and q = “Jane went for a jog.” Translate
the following logical propositions into English sentences.

21. p ∧ q

22. ∼(p ∧ q)

23. q ∧ ∼p

24. ∼q ∨ ∼p

25. ∼(∼p) (that’s “not(not p)”)

26. q ⊕∼q

For each pair of sentences below, is the second sentence the negation of the
first?

27. Pat owes Peter money. Peter owes Pat money.

28. The number of students in Math 155 is greater than 25. The number
of students in Math 155 is less than 25.

29. Pat, the math instructor, is rich. Pat, the math instructor, is poor.

Answer the questions given the following situations. If you cannot answer
the question, state whether “the situation is not possible” or “there’s not
enough information.”

30. Jane went for a jog and did her homework. Did she go for a jog?

31. Jane went for a jog or did her homework. Did she not do her home-
work?
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32. Jane went for a jog. Did she go for a jog and do her homework?

33. Jane did not go for a jog. Did she go for a jog and do her homework?
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Answers to Section 2.1 Exercises

1. Yes

2. No

3. No

4. No

5. No

6. Yes

7. p ∨ p

8. From the context, you could go with either ∼p ∨ ∼q or ∼p⊕∼q.

9. ∼(p ∨ q)

10. p ∧ q

11. p⊕∼q

12. exclusive (you usually don’t sit both inside and outside at the same
time)

13. inclusive (you could have seen both)

14. exclusive (you can only get one mark for the course, so it’s one or the
other but can’t be both)

15. exclusive (it can’t both be the correct answer and not the correct
answer at the same time)

16. inclusive (it’s possible that someone speaks both languages)

17. p ∨ (p ∧ q)

18. q ∧ (q ∨ p)

19. (q ∧ ∼p) ∨ p

20. q ∧ (p ∨ ∼q)

21. Jane did her homework and went for a jog.

22. It is not true that Jane both did her homework and went for a jog.

23. Jane went for a jog and Jane did not do her homework.
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24. Jane did not go for a jog or she didn’t do her homework.

25. It is not true that Jane didn’t do her homework.

26. Either Jane went for a jog or she didn’t, but not both.

27. No. (They could just be even, not owing each other anything.)

28. No. (What if there were exactly 25 students in the class?)

29. No. (Maybe Pat is middle class, so is neither rich nor poor?)

30. Yes.

31. Not enough info. Depends on whether she went for a jog. If she did
go for a jog, she could have not done her homework. But if she didn’t
go for a jog, she must have done her homework for sure.

32. Not enough info. Depends on whether she did her homework.

33. No.
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2.2 Venn Diagrams

2.2.1 Venn Diagrams with One Proposition

One way to visual operations on propositions is to use a Venn diagram.
Although Venn diagrams are more commonly used with sets, there are many
commonalities between the operations on sets and on logical propositions.
The Venn diagram for a single logical proposition p is shown below.

In this diagram, the rectangle stands for the universe, while the circle de-
notes the logical proposition p. We then shade in regions of the diagram
to indicate the regions of interest. For example, when we want to indicate
the proposition p, we shade the inside of the circle, as shown in the left
diagram. If instead we want to show the proposition ∼p, we shade outside
of the circle, as in the diagram to the right.

shading for p shading for ∼p

2.2.2 Venn Diagrams with Two Propositions

Venn diagrams with only one proposition don’t generally contain much in-
formation, as it’s usually pretty easy to visualize what p and ∼p mean when
you only have the one proposition. Where it gets more interesting is when
you have propositions p and q in the same diagram, as you can see in the
next diagram.
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Let’s try doing some shading to represent operations on the propositions p
and q. To begin with, let’s examine the shading for p, as shown in the left
diagram below. It looks very similar to the shading for the one-proposition
diagram, but you should notice that in order to shade in all of p, two regions
have been shaded in: the crescent-moon shaped part which represents the
part of p that does not overlap with q and the lozenge-shaped part which
represents the part of p that does overlap with q. Similarly, q is shown in
the diagram below on the right.

shading for p shading for q

Now, if you were to join p and q by an operator such as “and” or “or”, then
the way to do it is to consider all four regions of the diagram:

� the left crescent-moon shape belonging to p but not q

� the right crescent-moon shape belonging to q but not p

� the lozenge shape which is the overlap of both p and q

� the remaining region which is neither in p nor q

For example, if you wished to show the Venn diagram for p ∨ q, recall that
“or” means “one or the other or both”. You would consider the diagrams for
p and q above, and any regions that are shaded in either diagram or both
diagrams will be shaded in for p ∨ q. So, the parts that would be shaded
in the resulting diagram would be the left and right crescent-moon shapes
plus the lozenge.
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p ∨ q

To show p ∧ q, you need to shade those regions that are shaded in both of
the p and q diagrams. This means that you’d shade in the lozenge shaped
region, as you can see below.

p ∧ q

2.2.3 More complications

Suppose you wished to shade in a Venn diagram to show ∼p∧q. A straight-
forward approach is to do it by steps:

∼p q

And then to find what happens when we “and” the two diagrams we shade
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all the regions that are shaded in both of the above diagrams.

∼p ∧ q

To find ∼p∨ q, you’d take the diagrams for ∼p and q, and then shade in the
regions that are shaded in for either of the above diagrams.

∼p ∨ q

Example: Shade in the Venn diagram corresponding to ∼p∨∼q.

Answer: Here’s ∼p and ∼q below.

∼p ∼q

We need to shade in regions that are shaded in for either of the
above diagrams, to get the following.
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∼p ∨ ∼q

2.2.4 Negation and De Morgan’s Laws

Consider the proposition ∼(p ∧ q). The brackets mean that we should find
p∧ q first, and then negate it. Let’s start by shading the diagrams for p and
q:

shading for p shading for q

To show p ∧ q, you need to shade those regions that are shaded in both of
the p and q diagrams. This means that you’d shade in the lozenge shaped
region, as you can see below.

p ∧ q

Now to get ∼(p ∧ q) from p ∧ q, we take the p ∧ q diagram and negate it.
Essentially, we “reverse” the diagram by shading in all previously unshaded
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regions, and not shading in any previous shaded regions, resulting in the
following.

∼(p ∧ q)

You can see that we get exactly the same result as when we found ∼p∨∼q.
This result, that ∼p∨∼q is equivalent to ∼(p∧q), is true for all propositions
p and q. You could, if you wish, show also that ∼p ∧ ∼q is equivalent to
∼(p ∨ q) for all p and q. These two statements are called De Morgan’s
theorems and we will be revisiting them later.

2.2.5 Venn Diagrams with Three Propositions

Similarly, we can do Venn diagrams with three propositions, as shown in the
next diagram.

Notice that there is a circle for each set, and that there are regions where
some or all of the sets overlap. To find out how to shade the diagram for
combinations of sets such as (p ∨ q) ∧ r, do the shading process in steps.
Here’s p, q, and r below.
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p q r

Then p ∨ q gives

p ∨ q

and intersecting this with proposition r from above gives

(p ∨ q) ∧ r

The diagrams for p ∨ q ∨ r and p ∧ q ∧ r are then given below. (Because
the operations are all the same in each expression, I don’t need brackets to
show the order of operations for these particular cases.)
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p ∨ q ∨ r p ∧ q ∧ r
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Exercises for Section 2.2

Draw Venn diagrams using two propositions p and q, shading in the appro-
priate regions for the following situations.

1. p ∨ q

2. p ∧ ∼q

3. ∼p ∧ ∼q

4. ∼(p ∧ ∼q) (this would just be the negation of #2)

5. ∼(p ∨ q)

6. p ∧ (∼p ∨ q)

7. p ∨ (p ∧ q)

Draw Venn diagrams using three propositions: p, q, and r. Shade in the
appropriate regions for the following situations.

8. p ∨ q ∨ r

9. (p ∧ q) ∨ r)

10. p ∧ (q ∨ r)

11. p ∨ ∼q ∨ r

12. ∼p ∧ q ∧ ∼r

13. (p ∧ q) ∨ ∼r

14. ∼q ∧ (∼p ∨ r)
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Answers to Section 2.2 Exercises

1.

2.

3.

4.

5.
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6.

7.

8.

9.

10.
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11.

12.

13.

14.
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2.3 Logical Equivalence

2.3.1 Truth Tables

Truth Tables with Two Variables

Let us consider the propositions p and q. Since they are propositions, p is
either true or false and q is also either true or false. This leads us to four
possible combinations of p and q:

1. p and q are both false

2. p is false and q is true

3. p is true and q is false

4. p and q are both true

We can combine these possibilities into a table called a truth table. We
can add further columns to find out what the value of other compound
propositions for each combination of p and q as well. Suppose we wished to
find out what the truth table was for p ∧ q. Then the table would look like
the following.

p q p ∧ q

F F F

F T F

T F F

T T T

For example, when p is false and q is true (the second row, where p = F and
q = T), then p ∧ q is false because one of them is false (they are not both
true).

Similarly, the truth table for p ∨ q is

p q p ∨ q

F F F

F T T

T F T

T T T
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And if we like, we can combine the two tables above into a single table like
so:

p q p ∧ q p ∨ q

F F F F

F T F T

T F F T

T T T T

However, we can also abbreviate the table, changing all Fs to 0s and Ts to
1s. We do this so that there is a good correspondence between these truth
tables and the tables we will be learning for sets and Boolean algebra. So
another equally correct truth table would be:

p q p ∧ q p ∨ q

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

Truth Tables with One Variable

What if we were interested in the truth table for p∨p? Since this truth table
contains only one variable p rather than two, it will only have two rows since
p can either be true or false (and yes, you could omit the second column if
you wish).

p p p ∨ p

0 0 0

1 1 1

Let’s now look at how to write the truth table for p ∧ 1, where 1 means a
statement that is always true. (Be careful! The number 1 is a constant, not
a variable! It never takes the value of zero.) The table would look like:

p 1 p ∧ 1

0 1 0

1 1 1
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We notice that the last column looks like the first, so p ∧ 1 has the same
values as p. We say, then, that p ∧ 1 is logically equivalent to p. We’ll
talk more about logical equivalence in a bit.

Negations in Truth Tables

To negate a variable, we simply switch the value of each entry in that column
from its previous value. So if we were interested in the truth table for p∨∼p,
we’d have to negate p. To do this, we’ll take every entry in the p column
and switch all the zeros to ones and the ones to zeros. We’ll then “or” the
first and second columns as before.

p ∼p p ∨ ∼p

0 1 1

1 0 1

Notice, then, that p∨∼p is always true. I hope that makes a certain amount
of sense: the proposition “Pat’s hair is green or Pat’s hair is not green” is a
statement that is always true independent of Pat’s hair colour.

To negate an expression, we use the same idea and switch the value of each
entry in the column for that expression from its previous value. For example,
here is the truth table for ∼(p ∧ 1):

p 1 p ∧ 1 ∼(p ∧ 1)

0 1 0 1

1 1 1 0

You can see that to get the fourth column (which is the negation of the
third column), we’ve just switched the values of the expression in the third
column.

Truth Tables with Three Variables

What would the truth table for three propositions look like? We must have
eight rows to display all possibilities for p, q, and r. The truth table for
∼p ∧ (q ∨ ∼r) would then be
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p q r ∼r q ∨ ∼r ∼p ∼p ∧ (q ∨ ∼r)

0 0 0 1 1 1 1

0 0 1 0 0 1 0

0 1 0 1 1 1 1

0 1 1 0 1 1 1

1 0 0 1 1 0 0

1 0 1 0 0 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

It’s important to note that the actual order of the rows doesn’t matter for
the truth table to be complete. However, if you write out the table with the
rows in a random order, it’s very easy to duplicate one of the previous rows.
The duplicate row in and of itself isn’t a mistake, but if you stop your table
at the correct total number of rows, the duplicate means that one of the
combinations of your variables is missing, which is an error.

Another common mistake is to take a shortcut and start the truth table
with one of the columns being, for example, ∼p. This is not correct, since
truth tables must always start with unnegated variables.

2.3.2 Logical Equivalence

Two logical expressions are said to be logically equivalent if they have
the same values in their columns in the truth table. We saw in our examples
above that p ∨ ∼p was logically equivalent to 1 and p ∧ 1 was logically
equivalent to p. The symbol for “logically equivalent to” is ⇔, so p∨∼p ⇔ 1
and p ∧ 1 ⇔ p.

Example: Is p ∧ (q ∨ r) logically equivalent to (p ∧ q) ∨ r?

Answer:
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p q r q ∨ r p ∧ (q ∨ r) p ∧ q (p ∧ q) ∨ r

0 0 0 0 0 0 0

0 0 1 1 0 0 1

0 1 0 1 0 0 0

0 1 1 1 0 0 1

1 0 0 0 0 0 0

1 0 1 1 1 0 1

1 1 0 1 1 1 1

1 1 1 1 1 1 1

No, these two expressions are not logically equivalent because
their columns in the truth table, columns 5 and 7, are not iden-
tical. This example shows once more that order of operations is
important!

Example: Simplify (p ∧ q) ∨ (∼p ∧ q).

Answer:

p q ∼p p ∧ q ∼p ∧ q (p ∧ q) ∨ (∼p ∧ q)

0 0 1 0 0 0

0 1 1 0 1 1

1 0 0 0 0 0

1 1 0 1 0 1

Notice that the last column is identical to the column for q.
Therefore, (p∧ q)∨ (∼p∧ q) is logically equivalent to q, which is
the simplified logical expression.

Example: Is p⊕ q logically equivalent to (p ∧ ∼q) ∨ (∼p ∧ q)?

Answer:
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p q p⊕ q ∼p ∼q p ∧ ∼q ∼p ∧ q (p ∧ ∼q) ∨ (∼p ∧ q)

0 0 0 1 1 0 0 0

0 1 1 1 0 0 1 1

1 0 1 0 1 1 0 1

1 1 0 0 0 0 0 0

Yes, the two expressions are logically equivalent.
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Exercises for Section 2.3

Give the truth tables for the following logical expressions.

1. p ∧ ∼p

2. p ∨ 1

3. p ∧ ∼q

4. ∼(p ∨ q)

5. p⊕∼q

6. p ∨ (∼p ∧ q)

7. (p ∨ q) ∧ r

8. p ∨ q ∨ ∼r

9. (p ∧ q) ∨ ∼(p ∨ ∼q)

10. (∼p ∨ ∼q) ∧ (∼p ∨ q)

Are the two expressions logically equivalent?

11. ∼(p ∧ q) and ∼p ∧ ∼q

12. ∼(p ∨ q) and ∼p ∧ ∼q

13. p⊕ q and ∼p⊕∼q

14. p ∨ (q ∧ r) and (p ∨ q) ∧ r

15. p ∨ (p ∧ q) and p

16. (p ∨ q) ∨ r and p ∨ (q ∨ r)

17. p⊕ q and (p ∧ q) ∨ (∼p ∧ ∼q)

Simplify.

18. p ∧ p

19. p ∨ ∼p

20. p ∧ 0

21. ∼p⊕ p

22. (p⊕ q) ∧ (p⊕∼q)
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23. p ∨ (p ∧ q)

24. q ∧ (p ∨ q)

25. (tricksy) p ∧ (∼p ∨ q)

26. (tricksy) p ∨ (∼p ∧ q)
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Answers to Section 2.3 Exercises

1.
p ∼p p ∧ ∼p

0 1 0

1 0 0

2.
p 1 p ∨ 1

0 1 1

1 1 1

3.
p q ∼q p ∧ ∼q

0 0 1 0

0 1 0 0

1 0 1 1

1 1 0 0

4.
p q p ∨ q ∼(p ∨ q)

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

5.
p q ∼q p⊕∼q

0 0 1 1

0 1 0 0

1 0 1 0

1 1 0 1
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6.
p q ∼p ∼p ∧ q p ∨ (∼p ∧ q)

0 0 1 0 0

0 1 1 1 1

1 0 0 0 1

1 1 0 0 1

7.
p q r p ∨ q (p ∨ q) ∧ r

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 1 1 1 1

1 0 0 1 0

1 0 1 1 1

1 1 0 1 0

1 1 1 1 1

8.
p q r ∼r p ∨ q ∨ ∼r

0 0 0 1 1

0 0 1 0 0

0 1 0 1 1

0 1 1 0 1

1 0 0 1 1

1 0 1 0 1

1 1 0 1 1

1 1 1 0 1
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9.
p q ∼q p ∧ q p ∨ ∼q ∼(p ∨ ∼q) (p ∧ q) ∨ ∼(p ∨ ∼q)

0 0 1 0 1 0 0

0 1 0 0 0 1 1

1 0 1 0 1 0 0

1 1 0 1 1 0 1

10.
p q ∼p ∼q ∼p ∨ ∼q ∼p ∨ q (∼p ∨ ∼q) ∧ (∼p ∨ q)

0 0 1 1 1 1 1

0 1 1 0 1 1 1

1 0 0 1 1 0 0

1 1 0 0 0 1 0

11.
p q p ∧ q ∼(p ∧ q) ∼p ∼q ∼p ∧ ∼q

0 0 0 1 1 1 1

0 1 0 1 1 0 0

1 0 0 1 0 1 0

1 1 1 0 0 0 0

No, because the 4th and 7th columns are not the same.

12.
p q p ∨ q ∼(p ∨ q) ∼p ∼q ∼p ∧ ∼q

0 0 0 1 1 1 1

0 1 1 0 1 0 0

1 0 1 0 0 1 0

1 1 1 0 0 0 0

Yes, because the 4th and 7th columns are identical.
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13.
p q p⊕ q ∼p ∼q ∼p⊕∼q

0 0 0 1 1 0

0 1 1 1 0 1

1 0 1 0 1 1

1 1 0 0 0 0

Yes, because the 3rd and 6th columns are identical.

14.
p q r q ∧ r p ∨ (q ∧ r) p ∨ q (p ∨ q) ∧ r

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 1 1

1 0 0 0 1 1 0

1 0 1 0 1 1 1

1 1 0 0 1 1 0

1 1 1 1 1 1 1

No, because the 5th and last columns are not identical.

15.
p q p ∧ q p ∨ (p ∧ q)

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 1

Yes, because the first and last columns are identical.
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16.
p q r p ∨ q (p ∨ q) ∨ r q ∨ r p ∨ (q ∨ r)

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 1 1 0 1

1 0 1 1 1 1 1

1 1 0 1 1 1 1

1 1 1 1 1 1 1

Yes, because the 5th and last columns are identical.

17.
p q p⊕ q ∼p ∼q p ∧ q ∼p ∧ ∼q (p ∧ q) ∨ (∼p ∧ ∼q)

0 0 0 1 1 0 1 1

0 1 1 1 0 0 0 0

1 0 1 0 1 0 0 0

1 1 0 0 0 1 0 1

No, because the 3rd and last columns are not identical. (But I think
you can see that the last expression is the negation of column 3.)

18.
p p p ∧ p

0 0 0

1 1 1

This expression is logically equivalent to p. (You can omit the second
column for p if you wish.)

19.
p ∼p p ∨ ∼p

0 1 1

1 0 1

This expression is logically equivalent to 1.
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20.
p 0 p ∧ 0

0 0 0

1 0 0

This expression is logically equivalent to 0.

21.
p ∼p ∼p⊕ p

0 1 1

1 0 1

This expression simplifies to 1.

22.
p q p⊕ q ∼q p⊕∼q (p⊕ q) ∧ (p⊕∼q)

0 0 0 1 1 0

0 1 1 0 0 0

1 0 1 1 0 0

1 1 0 0 1 0

This expression simplifies to 0.

23.
p q p ∧ q p ∨ (p ∧ q)

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 1

This expression is logically equivalent to p.

24.
p q p ∨ q q ∧ (p ∨ q)

0 0 0 0

0 1 1 1

1 0 1 0

1 1 1 1
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This expression simplifies to q.

25.
p q ∼p ∼p ∨ q p ∧ (∼p ∨ q)

0 0 1 1 0

0 1 1 1 0

1 0 0 0 0

1 1 0 1 1

This expression is logically equivalent to p ∧ q.

26.
p q ∼p ∼p ∧ q p ∨ (∼p ∧ q)

0 0 1 0 0

0 1 1 1 1

1 0 0 0 1

1 1 0 0 1

This expression simplifies to p ∨ q.
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2.4 Boolean Algebra

2.4.1 Logic Circuits

A logic circuit or digital circuit is an electrical circuit based on a discrete
number of voltage levels, usually two. Two-level circuits usually have one
voltage set at zero volts, and the circuit then behaves like a switch, being
either on or off. A nice diagram for a switch looks like this:

so that when the switch is open, as if the diagram, no current flows and the
switch is off. When the switch closes and there’s a clear path from the left
side to the right side, the switch is on.

A digital circuit then makes logical decisions, based on the input to the
circuit. The simplest logic circuits are called gates. Physically, a gate is a
transistor circuit which takes one or more voltage inputs and gives a single
voltage output.

One way to represent the action of a gate is by using a truth table. As usual
in a truth table, all possible combinations of the input voltages are given,
as well as the output of the gate for each set of inputs. Each input voltage
is given a symbol, such as A. When the input signal is off, the value of A
is given as 0, and when it’s on, the value of A is 1. This then looks exactly
like the truth tables we studied with logical propositions.

“and” gate

The switch representation of an “and” gate looks like this:

It is a series circuit, and both switches must be closed (on) for the circuit to
be complete. You can see, then, that this is the same as “A and B”, since
“A and B” is true when both A is true and B is true.

Another common representation is the gate representation, which looks
like this:
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A
B

AB

In symbols, we write “A and B” as A ·B or just AB.

“or” gate

The switch representation of an “or” gate looks like this:

It is a parallel circuit, and at least one switch must be closed (on) for the
circuit to be complete from left to right. You can see, then, that this is the
same as “A or B”, since “A or B” is true when either A is true or B is true
or both.

Another common representation is the gate representation, which looks
like this:

A
B

A+B

In symbols, we write “A or B” as A+B.

“not” gate

The “not” gate, or inverter, has the diagram

A A
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and we write (not-A) as A. If the negation happens in combination with
another gate, we usually omit the triangle and just have a little circle to
show the negation, as in the next example.

2.4.2 Gate Representations of Logic Circuits

The gate representation of the logic circuit for AB is then

A
B AB

with the round circle on the input B negating it, so that the two inputs to
the “and” gate (the semicircle) are then A and B.

The gate representation for A+B is then

A
B A+B

with the “or” gate giving A+B, which the little round circle then negates.2

Example: What is the logic circuit expression for the following
gate diagram?

A
B

Answer: AB

We can also have multiple “and” or “or” gates, or combinations of them, in
our diagrams, as in the following example.

2Strictly speaking, the “or” gate together with a negation on the output is called a
“nor” gate, just like the word “nor” in English. There is also a “nand” gate, which does
not have an analogous word in the English language. But as a gentle introduction to gate
diagrams, we will only be using the three basic gates: “and”, “or”, and “not”.
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Example: What is the logic circuit expression for the following
gate diagram?

A
B

C

Answer: A+B C

2.4.3 Boolean Algebra

The symbols used for circuits, AB, A+B, and A, are the same symbols as
used in Boolean algebra. In this type of algebra, each variable (A, B, etc.)
can only have two values, 0 and 1.

Truth tables in Boolean algebra then look very similar to the truth tables
that we’ve studied in logic. For example, the truth table showing AB and
A+B is:

A B AB A+B

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

If you have more than one operation happening in a Boolean expression, the
order of operations is very similar to the order of operations in arithmetic.
For example, if you have the logical expression AB + C, in arithmetic you
multiply before you add. In Boolean algebra, you “and” before you “or”,
just as in symbolic logic. But here the negation sign behaves in the same
way as brackets do.

For example, here is the order in which you would evaluate the following
Boolean expressions.
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AB + C First evaluate AB, then do the “+C”.

A+BC First evaluate BC, then “or” with A.

AB First evaluate A, then “and” with B.

A+B First evaluate A+B, then negate the result.

A(B + C) First evaluate the expression in the brackets, then “and” with A.

A B + C First evaluate the expression B + C, then negate it, then “and” with A.

Truth tables can then be used to demonstrate logical equivalence between
Boolean expressions.

Example: Is AB + C logically equivalent to A(B + C)?

Answer:

A B C AB AB + C B + C A(B + C)

0 0 0 0 0 0 0

0 0 1 0 1 1 0

0 1 0 0 0 1 0

0 1 1 0 1 1 0

1 0 0 0 0 0 0

1 0 1 0 1 1 1

1 1 0 1 1 1 1

1 1 1 1 1 1 1

And as the 5th and 7th columns aren’t identical, these two expres-
sions aren’t logically equivalent. Once again, order of operations
matters.

2.4.4 Boolean Syntax in Python

Python allows you to perform logical operations on Boolean variables in the
way that you would expect, as you can see in the accompanying figure.
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Exercises for Section 2.4

Draw the gate representation for the following logical expressions.

1. A+B

2. A+B

3. AB

4. A B

5. A+B

6. AB + C

7. A(B + C)

8. ABC

9. A B + C

Write the Boolean expression which corresponds to the following gates.

10.
A
B

11.
A
B

12.
A
B

13.
A
B
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14.
A
B

C

15.
A

B
C

16.
A

B
C

17.
A
B

C

Give the truth tables for the following expressions.

18. AA

19. A+ 1

20. AB
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21. A+B

22. A+AB

23. (A+B)C

24. A+B + C

Are the two expressions logically equivalent? Justify your answer by giving
a truth table.

25. AB and A B

26. A+B and A B

27. A+BC and (A+B)C

28. A+AB and A

29. (A+B) + C and A+ (B + C)

Simplify the following logical expressions using truth tables.

30. AA

31. A+A

32. A+ 0

33. A+AB

34. A(A + B) – this one’s a bit trickier! If you’re stuck, try writing the
truth tables for combinations of A and B, like (A + B) for example,
to find one that fits.
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Answers to Section 2.4 Exercises

1.
A
B A+B

2.
A
B A+B

3.
A
B AB

4.
A
B A B

5.
A
B A+B

6. A
B

C AB + C
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7.
A

B
C

A(B + C)

8.
A
B

C AB C

9.
A
B

C A B + C

10. A B

11. A+B

12. A+B

13. AB

14. (A+B) · C

15. A+BC

16. A+B + C

17. A B C
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18. A A A A

0 1 0

1 0 0

19. A 1 A+ 1

0 1 1

1 1 1

20. A B B A B

0 0 1 0

0 1 0 0

1 0 1 1

1 1 0 0

21. A B A+B A+B

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

22. A B A A B A+A B

0 0 1 0 0

0 1 1 1 1

1 0 0 0 1

1 1 0 0 1
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23. A B C A+B (A+B)C

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 1 1 1 1

1 0 0 1 0

1 0 1 1 1

1 1 0 1 0

1 1 1 1 1

24. A B C C A+B A+B + C

0 0 0 1 0 1

0 0 1 0 0 0

0 1 0 1 1 1

0 1 1 0 1 1

1 0 0 1 1 1

1 0 1 0 1 1

1 1 0 1 1 1

1 1 1 0 1 1

25. No A B AB AB A B A B

0 0 0 1 1 1 1

0 1 0 1 1 0 0

1 0 0 1 0 1 0

1 1 1 0 0 0 0

26. Yes A B A+B A+B A B A B

0 0 0 1 1 1 1

0 1 1 0 1 0 0

1 0 1 0 0 1 0

1 1 1 0 0 0 0
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27. No A B C BC A+BC A+B (A+B)C

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 1 0

0 1 1 1 1 1 1

1 0 0 0 1 1 0

1 0 1 0 1 1 1

1 1 0 0 1 1 0

1 1 1 1 1 1 1

28. Yes A B AB A+AB

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 1

29. Yes A B C A+B (A+B) + C B + C A+ (B + C)

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 1 1 0 1

1 0 1 1 1 1 1

1 1 0 1 1 1 1

1 1 1 1 1 1 1

30. A A AA

0 0 0

1 1 1

AA is equivalent to A
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31. A A A+A

0 0 0

1 1 1

A+A is equivalent to A

32. A 0 A+ 0

0 0 0

1 0 1

A+ 0 is equivalent to A

33. A B AB A+AB

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 1

A+AB is equivalent to A

34. A B A A+B A(A+B)

0 0 1 1 0

0 1 1 1 0

1 0 0 0 0

1 1 0 1 1

A(A+B) is logically equivalent to AB
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2.5 Laws of Logic

You may have noticed some common patterns running through some of the
exercises by now. Let’s examine those patterns in more detail.

First, let us look at the connections between the two sets of symbols we’ve
used so far.

Logic p ∧ q p ∨ q ∼p F T

Boolean Algebra AB A+B A 0 1

In each case, we have symbols for negation, “or”, and “and”. There are also
equivalences with False/True for logic, and 0/1 (off/on) for Boolean algebra
and logic circuits. Let’s see what else they have in common.

2.5.1 Identity Laws

Examining logical symbols first, let’s fill in the following truth table.

p 0 1 p ∧ 0 p ∨ 0 p ∧ 1 p ∨ 1

0 0 1 0 0 0 1

1 0 1 0 1 1 1

From this table, we can see that

p ∧ 0 ⇔ 0

p ∨ 0 ⇔ p

p ∧ 1 ⇔ p

p ∨ 1 ⇔ 1

These are the identity laws, true for any proposition p. Notice that if we
replaced all of the logic symbols in the table with Boolean algebra notation,
we’d get

A · 0 = 0

A+ 0 = A

A · 1 = A

A+ 1 = 1
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2.5.2 Idempotent Laws

Similarly, let’s examine the following truth table.

p p ∧ p p ∨ p

0 0 0

1 1 1

From this table, we can see that

p ∧ p ⇔ p

p ∨ p ⇔ p

These are called the idempotent laws. Notice that if we replaced all of
the logic symbols in the table with the equivalent set symbols and also by
Boolean algebra notation, we’d get

A ·A = A

A+A = A

2.5.3 Complement Laws

If we wished, we could construct another truth table to show that

∼(∼p) ⇔ p

p ∧ ∼p ⇔ 0

p ∨ ∼p ⇔ 1

These are called the complement laws. Notice that if we replaced all of
the logic symbols in the table with Boolean algebra notation, we’d get

A = A

A ·A = 0

A+A = 1
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2.5.4 Commutative Laws

Similarly,

p ∧ q ⇔ q ∧ p

p ∨ q ⇔ q ∨ p

These are called the commutative laws. Notice that if we replaced all of
the logic symbols in the table with Boolean algebra notation, we’d get

AB = BA

A+B = B +A

2.5.5 Associative Laws

Similarly, we could construct another truth table to find that

(p ∧ q) ∧ r ⇔ p ∧ (q ∧ r)

(p ∨ q) ∨ r ⇔ p ∨ (q ∨ r)

These are called the associative laws. Notice that if we replaced all of the
logic symbols in the table by Boolean algebra notation, we’d get

(AB)C = A(BC)

(A+B) + C = A+ (B + C)

2.5.6 Summary

We can then summarize these laws as follows.
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Law Logic Boolean Algebra

Identity p ∧ 1 ⇔ p A · 1 = A

p ∨ 1 ⇔ 1 A+ 1 = 1

p ∧ 0 ⇔ 0 A · 0 = 0

p ∨ 0 ⇔ p A+ 0 = A

Idempotent p ∧ p ⇔ p AA = A

p ∨ p ⇔ p A+A = A

Complement ∼(∼p) ⇔ p A = A

p ∧ ∼p ⇔ 0 AA = 0

p ∨ ∼p ⇔ 1 A+A = 1

Commutative p ∧ q ⇔ q ∧ p AB = BA

p ∨ q ⇔ q ∨ p A+B = B +A

Associative (p ∧ q) ∧ r ⇔ p ∧ (q ∧ r) (AB)C = A(BC)

(p ∨ q) ∨ r ⇔ p ∨ (q ∨ r) (A+B) + C = A+ (B + C)

How, then, can we use these laws?

2.5.7 Simplifying Logical Expressions

We can now use these laws to simplify logical expressions or to prove logical
equivalence without resorting to truth tables.

Suppose we wish to simplify (p ∧ 1) ∨ (∼q ∧ 0) ∨ (∼r ∧ r). Note that this
would require a truth table with 8 rows to show all combinations of p, q,
and r. However, to do so using the laws of logic will require fewer steps.

The procedure for simplifying an expression using the laws of logic is to
simplify each piece of the expression using a single law, then write the name
of the law you are using to one side (writing the name of the law is required,
and not optional!). If you are using more than one law, then use a separate
line for each law/step.

Simplifying (p ∧ 1) ∨ (∼q ∧ 0) ∨ (∼r ∧ r) would then give
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(p ∧ 1) ∨ (∼q ∧ 0) ∨ (∼r ∧ r)

p ∨ 0 ∨ (∼r ∧ r) identity

(p ∨ 0) ∨ (∼r ∧ r) associative

p ∨ (∼r ∧ r) identity

p ∨ (r ∧ ∼r) commutative

p ∨ 0 complement

p identity

Our conclusion is therefore that (p ∧ 1) ∨ (∼q ∧ 0) ∨ (∼r ∧ r) ⇔ p.

We could also do an alternate solution, using a different order of steps to
get our answer.

(p ∧ 1) ∨ (∼q ∧ 0) ∨ (∼r ∧ r)

p ∨ 0 ∨ (∼r ∧ r) identity

p ∨ 0 ∨ 0 complement

p ∨ 0 definition of “or”

p identity

And we reach the same conclusion.

Example: Simplify (p ∨ ∼p) ∧ (∼p ∨ ∼p).

Answer:

(p ∨ ∼p) ∧ (∼p ∨ ∼p)

1 ∧ (∼p ∨ ∼p) complement

1 ∧ (∼p) idempotent

∼p identity

(And if you applied the laws correctly but in a different order or
combination, you should still come to the same, correct conclu-
sion.)
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Exercises for Section 2.5

1. Which of the following statements is always true?

(a) Darth Vader is both evil and not evil.

(b) Darth Vader is both evil and evil.

(c) Darth Vader is either evil or evil.

(d) Darth Vader is either evil or not evil.

2. Which of the following statements is always false?

(a) The roadrunner has escaped from the wily coyote and he has not
escaped from the wily coyote.

(b) The roadrunner has escaped from the wily coyote and he has
escaped from the wily coyote.

(c) The roadrunner has escaped from the wily coyote or he has not
escaped from the wily coyote.

(d) The roadrunner has escaped from the wily coyote or he has es-
caped from the wily coyote.

3. Use a truth table to prove that the two idempotent laws are true.

4. Use a truth table to prove that the four identity laws are true.

Name the law of logic used in the following. Note that the variables have
changed, but that the law is still valid.

5. ∼q ∨ 1 ⇔ 1

6. B = B

7. ∼r ∧ r ⇔ 0

8. ∼q ∨ 0 ⇔ ∼q

9. B · 1 = B

10. q ∨ q ⇔ q

11. AB +AB = 1

12. (∼p ∧ q) ∧ ∼q ⇔ ∼p ∧ (q ∧ ∼q)
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Simplify the given expression, and state the name of the law you used. You
should be able to do these in one step.

13. r ∨ 0

14. C + C

15. ∼(∼r)

16. A+A

17. B · 1

Use the laws of logic to simplify the following logical expressions. If you’re
completely stuck, try using a truth table instead.

18. (p ∧ p) ∨ (q ∧ ∼q)

19. (p ∨ p) ∧ (q ∨ 0)

20. p ∨ (q ∧ ∼q)

Use the laws of logic to simplify the following Boolean expressions. If you’re
completely stuck, try using a truth table instead.

21. (A+A)(B +B)

22. B · 0 +AA

23. (B +B)(A+ 1)

24. ABB

Prove the following Boolean expressions are equivalent using the laws of
logic. If you’re completely stuck, try using a truth table.

25. (AA)B = A(BB)

26. B · 1 +AA = B · 1

27. (A+ 0)(B +B) = A

28. AA+B B = A+B
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Answers to Section 2.5 Exercises

1. (d) is true because in logical symbols, p ∨ ∼p ⇔ 1.

2. (a) is false because p ∧ ∼p ⇔ 0.

3. The two idempotent laws are true because the last column in each
table is the same as for p.

p p p ∨ p

0 0 0

1 1 1

p p p ∧ p

0 0 0

1 1 1

4. The four identity laws are true because the p∧0 column is the same as
0, the p∨ 0 and p∧ 1 columns are the same as p, and the p∨ 1 column
is the same as 1.

p 0 1 p ∧ 0 p ∨ 0 p ∧ 1 p ∨ 1

0 0 1 0 0 0 1

1 0 1 0 1 1 1

5. identity

6. complement

7. complement

8. identity

9. identity

10. idempotent

11. complement

12. associative

13. r, using the identity law

14. 1, complement

15. r, complement

16. A, idempotent

17. B, identity
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Note: for the following questions, there may be several different ways to get
to the simplest answer. Also, you may take steps in a different order. If you
are concerned about a different solution, please show your instructor. (Also,
I haven’t explicitly written out any steps involving either the Commutative
or Associative laws.)

18. (p ∧ p) ∨ (q ∧ ∼q) ⇔ p ∨ (q ∧ ∼q) Idempotent

⇔ p ∨ 0 Complement

⇔ p Identity

19. (p ∨ p) ∧ (q ∨ 0) ⇔ p ∧ (q ∨ 0) Idempotent

⇔ p ∧ q Identity

20. p ∨ (q ∧ ∼q) ⇔ p ∨ 0 Complement

⇔ p Identity

21. (A+A)(B +B) = A(B +B) Idempotent

= A · 1 Complement

= A Identity

22. B · 0 +AA = 0 +AA Identity

= 0 +A Idempotent

= A Identity

23. (B +B)(A+ 1) = 1 · (A+ 1) Complement

= 1 · 1 Identity

= 1 Definition of “and”

24. ABB = A · 0 Complement

= 0 Identity

25. (AA)B = A(BB)

0 ·B = A(BB) Complement

0 ·B = A · 0 Complement

0 = A · 0 Identity

0 = 0 Identity
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26. B · 1 +AA = B · 1
B +AA = B Identity

B + 0 = B Complement

B = B Identity

B = B Complement

27. (A+ 0)(B +B) = A

A(B +B) = A Identity

A · 1 = A Complement

A = A Identity

28. AA+B B = A+B

A+B = A+B Idempotent
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2.6 More Laws of Logic

2.6.1 De Morgan’s Laws

Let’s examine the following truth table.

p q p ∧ q ∼(p ∧ q) ∼p ∼q ∼p ∨ ∼q

0 0 0 1 1 1 1

0 1 0 1 1 0 1

1 0 0 1 0 1 1

1 1 1 0 0 0 0

From this table, we can see that

∼(p ∧ q) ⇔ ∼p ∨ ∼q

We can draw a similar table to show that

∼(p ∨ q) ⇔ ∼p ∧ ∼q

These are called De Morgan’s laws. Notice that if we replaced all of the
logic symbols in the table by Boolean algebra notation, we’d get

AB = A+B

A+B = A B

2.6.2 Distributive Laws

Similarly, we could use a truth table to show that

p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)

These are called the distributive laws. Notice that if we replaced all of the
logic symbols in the table with Boolean algebra notation, we’d get

A(B + C) = AB +AC

A+BC = (A+B)(A+ C)
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2.6.3 Absorption Laws

Similarly,

p ∧ (p ∨ q) ⇔ p

p ∧ (∼p ∨ q) ⇔ p ∧ q

We can draw a similar table to show that

p ∨ (p ∧ q) ⇔ p

p ∨ (∼p ∧ q) ⇔ p ∨ q

These are called the absorption laws. Notice that if we replaced all of
the logic symbols in the table with the equivalent set symbols and also by
Boolean algebra notation, we’d get

A(A+B) = A

A(A+B) = AB

A+AB = A

A+AB = A+B

2.6.4 Summary

We can then summarize these laws as follows.
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Law Logic Boolean Algebra

Identity p ∧ 1 ⇔ p A · 1 = A

p ∨ 1 ⇔ 1 A+ 1 = 1

p ∧ 0 ⇔ 0 A · 0 = 0

p ∨ 0 ⇔ p A+ 0 = A

Idempotent p ∧ p ⇔ p AA = A

p ∨ p ⇔ p A+A = A

Complement ∼(∼p) ⇔ p A = A

p ∧ ∼p ⇔ 0 AA = 0

p ∨ ∼p ⇔ 1 A+A = 1

Commutative p ∧ q ⇔ q ∧ p AB = BA

p ∨ q ⇔ q ∨ p A+B = B +A

Associative (p ∧ q) ∧ r ⇔ p ∧ (q ∧ r) (AB)C = A(BC)

(p ∨ q) ∨ r ⇔ p ∨ (q ∨ r) (A+B) + C = A+ (B + C)

De Morgan’s ∼(p ∧ q) ⇔ ∼p ∨ ∼q AB = A+B

∼(p ∨ q) ⇔ ∼p ∧ ∼q A+B = A B

Distributive p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r) A(B + C) = AB +AC

p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r) A+BC = (A+B)(A+ C)

Absorption p ∧ (p ∨ q) ⇔ p A(A+B) = A

p ∧ (∼p ∨ q) ⇔ p ∧ q A(A+B) = AB

p ∨ (p ∧ q) ⇔ p A+AB = A

p ∨ (∼p ∧ q) ⇔ p ∨ q A+AB = A+B

2.6.5 Simplifying Logical Expressions

The real power of these laws lies in simplifying logical expressions and in
proofs. (Remember – one law per line, must write name of law!)

Example: Simplify (p ∧ q) ∨ (p ∧ ∼q).

Answer:
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(p ∧ q) ∨ (p ∧ ∼q)

p ∧ (q ∨ ∼q) distributive

p ∧ 1 complement

p identity

Example: Simplify AB(A+B).

Answer:

AB(A+B)

ABA+ABB distributive

AAB +ABB commutative

0 ·B +A · 0 complement

0 + 0 identity

0 definition of “or”

Note that for many of these exercises, there is more than one way to answer.
Another equally valid simplification looks like the following.

AB(A+B)

ABAB De Morgan’s

0 complement

This is a much shorter answer, but does require a flash of insight at the
(A+B) pattern.

2.6.6 Proofs

Example: Show that A+A B = AB.

Answer:

Let’s examine the left-hand side.

A+A B = AB

A+B = AB absorption

A B = AB De Morgan’s

AB = AB complement

and the fact that the left-hand side is equivalent to the right-
hand side completes our proof.
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Example: Show that (A+ C)(C +AB) = AB + C.

Answer:

Let’s examine the left-hand side.

(A+ C)(C +AB) = AB + C

(C +A)(C +AB) = AB + C commutative

C +A(AB) = AB + C distributive

C + (AA)B = AB + C associative

C +AB = AB + C idempotent

AB + C = AB + C commutative

QED. (QED is short for the Latin phrase “quod erat demon-
strandum”, which means “it has been demonstrated”.)
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Exercises for Section 2.6

(Note that these are the same exercises as at the beginning of section 1.5,
but with a little twist.) Let p be “Rich is seven feet tall” and q be “Susan has
brown hair.” Translate the following English sentences into logical notation.
Then, use one of the laws of logic to write an equivalent logical expression.
Finally, translate your new expression back into an English sentence.

1. Rich is seven feet tall or he is seven feet tall.

2. Susan has brown hair and she has brown hair.

3. Either Rich is not seven feet tall or Susan does not have brown hair.

4. It is not true that Rich is seven feet tall and Susan has brown hair.

5. It is not true that Rich is seven feet tall or Susan has brown hair.

6. Rich is not seven feet tall and Susan does not have brown hair.

7. Rich is seven feet tall and Susan has brown hair.

8. Susan has brown hair or Rich is seven feet tall.

Name the law of logic used in the following. Note that the variables have
changed, but that the law is still valid.

9. ∼(q ∨ r) ⇔ ∼q ∧ ∼r

10. B(B +A) = B A

11. (p ∧ q) ∨ (p ∧ ∼q) ⇔ p ∧ (q ∨ ∼q)

12. A+ C = AC

13. B +AC = (B +A)(B + C)

14. ∼p ∨ (p ∧ r) ⇔ ∼p ∨ r

Simplify the given expression, and state the name of the law you used. You
should be able to do these in a single step.

15. A+AB

16. AB +AB

17. (A+B)(B + C)

18. q ∨ (q ∧ r)
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19. C + C

20. A B

For the following exercises, let p be “The moon is made of green cheese” and
q be “The earth is made of green cheese.” Translate the following English
sentences into logical notation. Then, use one of the laws of logic to write
an equivalent logical expression. Finally, translate your new expression back
into an English sentence. (Note that these are the same exercises as at the
beginning of section 2.1, but with a little twist.)

21. Either the moon is made of green cheese or both the moon and the
earth are made of green cheese.

22. The earth is made of green cheese and either the earth or the moon is
made of green cheese.

23. Either the earth is made of green cheese while the moon is not, or the
moon is made of green cheese.

24. The earth is made of green cheese and either the moon is made of
green cheese or the earth is not.

25. Remembering that ⊕ is “exclusive or”, show that A⊕B = AB + AB
by using a truth table.

26. The NAND gate (not-AND) has the following truth table. Use DeMor-
gan’s laws to find an equivalent Boolean expression using only OR and
NOT, and show that your expression has the same truth table.

A B A NAND B = AB

0 0 1

0 1 1

1 0 1

1 1 0

Simplify the following Boolean expressions using the laws of logic. If you’re
stuck, try using a truth table.

27. A+ C +B +A+B

28. A+B +A+B +A

29. A B
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30. A+B

31. A+B +AB

32. AB C +ABC

33. ABC +ABC +ABD +ABD

34. AB +A+AB

35. A+BCD +B

36. A B(A+B)

37. (A+B)(A+B)

38. A+AB +BC

39. B(A+ C) +ABC

40. (A+B + C)(A+B + C)

Prove that the following Boolean expressions are equivalent by using the
laws of logic. If you’re stuck, try using a truth table.

41. BB +AA = A

42. A(B +B) = A

43. ABC +ABC = AB

44. AB +ABC = AB + C

45. A+AB +ABC = A

46. AC +ABC = AC +BC

47. AB(A+B) = AB +AB

48. ABC +D = ABCD

49. A B A C = A B
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Answers to Section 2.6 Exercises

1. p ∨ p ⇔ p. Rich is seven feet tall.

2. q ∧ q ⇔ q. Susan has brown hair.

3. ∼p∨∼q ⇔ ∼(p∧ q). It is not the case that Rich is seven feet tall and
Susan has brown hair.

4. ∼(p ∧ q) ⇔ ∼p ∨ ∼q . Rich is not seven feet tall or Susan does not
have brown hair.

5. ∼(p ∨ q) ⇔ ∼p ∧ ∼q. Rich is not seven feet tall and Susan does not
have brown hair.

6. ∼p ∧ ∼q ⇔ ∼(p ∨ q) . It is not the case that Rich is seven feet tall or
Susan has brown hair.

7. p ∧ q ⇔ q ∧ p. Susan has brown hair and Rich is seven feet tall.

8. q ∨ p ⇔ p ∨ q. Rich is seven feet tall or Susan has brown hair.

9. De Morgan’s

10. absorption

11. distributive

12. De Morgan’s

13. distributive

14. absorption

15. A+B , absorption

16. AB, idempotent

17. B +AC, distributive

18. q, absorption

19. 1, complement

20. A+B , De Morgan’s

21. p ∨ (p ∧ q) ⇔ p . The moon is made of green cheese.

22. q ∧ (q ∨ p) ⇔ q. The earth is made of green cheese.
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23. (q∧∼p)∨p ⇔ p∨ (∼p∧ q) ⇔ p∨ q. (note: I’m using the commutative
laws to rearrange things) The moon or the earth is made of green
cheese.

24. q ∧ (p ∨ ∼q) ⇔ q ∧ p . The earth and the moon are made of green
cheese.

25.
A B A⊕B A B AB AB AB +AB

0 0 0 1 1 0 0 0

0 1 1 1 0 1 0 1

1 0 1 0 1 0 1 1

1 1 0 0 0 0 0 0

26. By DeMorgan’s law, AB = A+B

A B A NAND B = AB A B A+B

0 0 1 1 1 1

0 1 1 1 0 1

1 0 1 0 1 1

1 1 0 0 0 0

27. 1

28. 1

29. A+B

30. AB

31. 1

32. AB

33. AB

34. 1

35. A+B

36. 0

37. AB +AB

38. A+B + C
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39. B

40. A+B

41. BB +AA = A

0 +AA = A complement

AA = A identity

A = A idempotent

42. A(B +B) = A

A(1) = A complement

A = A identity

43. ABC +ABC = AB

AB(C + C) = AB distributive

AB(1) = AB complement

AB = AB identity

44. AB +ABC = AB + C

(AB) + (AB)C = AB + C associative (can skip this step)

AB + C = AB + C absorption

45. A+AB +ABC = A

A+ABC = A absorption

A+A(BC) = A associative (can skip)

A = A absorption

46. AC +ABC = AC +BC

(A+AB)C = AC +BC distributive

(A+B)C = AC +BC absorption

AC +BC = AC +BC distributive
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47. AB(A+B) = AB +AB

(A+B)(A+B) = AB +AB De Morgan’s

AA+AB +BA+BB = AB +AB distributive

0 +AB +BA+ 0 = AB +AB complement

AB +AB = AB +AB identity

48. ABC +D = ABCD

ABC D = ABCD De Morgan’s

ABCD = ABCD complement

49. AB A C = AB

AB(A+ C) = AB De Morgan’s

ABA+ABC = AB distributive

AB +ABC = AB idempotent

AB = AB absorption
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2.7 The Conditional

2.7.1 The Conditional Connective

Suppose we have two propositions, p and q. Remembering that connectives
are operations which join two or more propositions (like “and” and “or”),
the conditional connective is

If p, then q.

In symbols, this is written as p → q, and when read aloud, you say “p
implies q”. When using the conditional, the first proposition is called the
hypothesis and the second is called the conclusion.

There are other ways to state the conditional. “If p, then q” is equivalent to

(a) p implies q

(b) q, if p

(c) p is sufficient for q

(d) q is necessary for p

(e) p only if q

We’ll only be using the “If p, then q” and “p implies q” conventions in this
course.

But what does the conditional mean? Suppose you have an insurance con-
tract3 which reads:

If your house burns down, then the insurance company will give
you $1 000 000.

Let us further suppose your house burns down. Under the contract, the
insurance company must give you one million dollars. If it doesn’t, the
contract has been violated. But if your house doesn’t burn down and the
company doesn’t give you any money, the contract still holds. If your house
doesn’t burn down and out of boundless generosity the company give you
one million dollars anyway, the contract still holds. The only circumstances
under which the contract is violated is when your house does burn down but
the company fails to give you one million dollars. This leads to the following
truth table.

3My thanks go to my colleague Gilles Cazelais for providing the idea for this example.
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House burns down? You get $1 000 000? The contract holds

no no yes

no yes yes

yes no no

yes yes yes

To generalize to the propositions p and q,

p q p → q

F F T

F T T

T F F

T T T

What does this mean? It means that if p is true and q is false, then the
implication p → q cannot also be true. It also means that if p → q is true,
then you cannot have p true and q false at the same time.

Let’s look at another example. Suppose that the following conditional is
true: “If Barney is a dog, then Barney has four legs.” This means that if
the first proposition, “Barney is a dog,” is true, then only one conclusion
may be reached, that the second is true and Barney has four legs. However,
if p is false and Barney is not a dog, then our conditional doesn’t have
anything to say about the number of legs Barney may have. If Barney is
not a dog (Barney is a snake, octopus, bug, person, or pond), then Barney
may not have four legs. If Barney is not a dog (Barney is a cat, giraffe,
woolly mammoth, or table), Barney may have four legs. Our conditional
does not deal with what you may conclude when p is false.

Example: Suppose that the statement “If Pat sleeps in, she will
be late for class” is true. Answer the following questions.

(a) Pat sleeps in. Is she late for class?

(b) Pat does not sleep in. Is she late for class?

(c) Pat is late for class. Did she sleep in?

(d) Pat is not late for class. Did she sleep in?
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Answer:

(a) Yes.

(b) Maybe. (Perhaps she ran into traffic or was eaten by bears.
Remember that the conditional has nothing to say when
the first proposition is false.)

(c) Maybe. (Again, maybe there was another reason for her
lateness.)

(d) No.

2.7.2 The Converse

If p → q is true, is it also true that q → p? If p → q is called the conditional,
then q → p is called the converse. Let’s use our previous example again,
which was “If Barney is a dog, then Barney has four legs.” If this statement
is true, is it also true that “If Barney has four legs, then Barney is a dog”?

Clearly this second statement is not also true, since Barney could be a four-
legged creature that is not a dog, such as a cat, mouse, grizzly bear, or
mountain goat.

Let’s write out the truth table for the conditional and the converse.

p q p → q q → p

F F T T

F T T F

T F F T

T T T T

Here’s how to fill in the columns for any logical expression containing the
conditional connective (→ ). Let’s call the propositions “first” and “second”
so we don’t get confused with p and q. For the conditional first → second,
it will be true for all cases except when the first is true and the second is
false. So for q → p, look for the row in which q is true (rows 2 and 4) and
p is false (1 and 2). Then q is true and p is false only for row 2. Therefore,
all rows except for the second get True and the second row gets False. So
you can also see from the truth table that the conditional p → q and the
converse q → p are not logically equivalent.
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2.7.3 The Contrapositive

What about the contrapositive, ∼q → ∼p? For our familiar example, that
would be asking whether “If Barney is a dog, then Barney has four legs” is
equivalent to “If Barney does not have four legs, then Barney is not a dog”.
This at least looks a little more promising. Let’s try the truth table, but
this time using 1s and 0s instead of True and False.

p q ∼p ∼q p → q ∼q → ∼p

0 0 1 1 1 1

0 1 1 0 1 1

1 0 0 1 0 0

1 1 0 0 1 1

Remember, you’ll fill in all 1s except for the row where the first is true and
the second is false. So look for the rows with ∼q true (rows 1 and 3) and
∼p false (rows 3 and 4). So the row with the zero will be the third row. As
the last two columns are identical, then the conditional p → q is equivalent
to the contrapositive ∼q → ∼p.

Example: Write the contrapositive for the statement, “If today
is sunny, Pat will work in the garden.”

Answer: To get the contrapositive, negate each proposition and
then reverse the order. So the contrapositive is “If Pat is not
working in the garden, then today is not sunny.”

2.7.4 The Inverse

If p → q is the conditional, then the proposition ∼p → ∼q is called the
inverse. So if the conditional is “If Barney is a dog, then Barney has four
legs”, then the inverse of that would be “If Barney is not a dog, then Barney
does not have four legs.” You can see directly from this example that the
conditional and the inverse are not equivalent!

Here’s what the truth table looks like. (Remember that the → means that
the value is 1 except when the first is true and the second is false.)
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p q ∼p ∼q p → q ∼p → ∼q

0 0 1 1 1 1

0 1 1 0 1 0

1 0 0 1 0 1

1 1 0 0 1 1

Example: Draw the truth tables for the conditional (p → q), the
converse (q → p), the inverse (∼p → ∼q), and the contrapositive
(∼q → ∼p). Are any of these propositions logically equivalent?

Answer: Here’s the big truth table.

p q ∼p ∼q p → q q → p ∼p → ∼q ∼q → ∼p

0 0 1 1 1 1 1 1

0 1 1 0 1 0 0 1

1 0 0 1 0 1 1 0

1 1 0 0 1 1 1 1

Since the 5th and 8th columns are identical, the conditional (p →
q) is logically equivalent to the contrapositive (∼q → ∼p). Since
the 6th and 7th columns are identical, the converse (q → p) is
logically equivalent to the inverse (∼p → ∼q).

2.7.5 The “or” form of the conditional

Can the conditional p → q be rewritten using our basic connectives “and”,
“or”, and “not”? Yes, it can, because you can see by the truth table below
that p → q is logically equivalent to ∼p ∨ q.

p q ∼p ∼p ∨ q p → q

0 0 1 1 1

0 1 1 1 1

1 0 0 0 0

1 1 0 1 1

This means that “If Barney is a dog, then Barney has four legs” is logically
equivalent to “Either Barney is not a dog or he has four legs.”
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Example: Consider the conditional p → q . Is the converse
(q → p) logically equivalent to ∼p∨ q, ∼p∧ q, p∨∼q, or p∧∼q?

Answer: Let’s write in the truth table and compare columns.

p q ∼p ∼q q → p ∼p ∨ q ∼p ∧ q p ∨ ∼q p ∧ ∼q

0 0 1 1 1 1 0 1 0

0 1 1 0 0 1 1 0 0

1 0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 1 0

As can be seen from the table, the columns for q → p and p∨∼q
are identical, so these two expressions are logically equivalent.

2.7.6 De Morgan’s Law and the Contrapositive

Consider the conditional (p ∧ q) → r. The contrapositive would be ∼r →
∼(p ∧ q). Applying De Morgan’s Law gives ∼r → (∼p ∨ ∼q). Notice the
change from the “and” in the conditional to the “or” in the modified con-
trapositive. Forgetting to make that change is an easy trap to fall into.

Example: Consider the conditional “If Pat sleeps in or runs into
traffic, she will be late for class.” What is the contrapositive?
Use De Morgan’s Law to find your answer.

Answer: The conditional here is

(sleep or traffic) → late

The contrapositive is then

∼late → ∼(sleep or traffic)

→ ∼sleep and ∼traffic

Therefore, the contrapositive is “If Pat is not late for class, then
she didn’t sleep in and did not run into traffic.” The “or”
changes into an “and” because of De Morgan’s Law.
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Exercises for Section 2.7

In the following exercises, let p denote “The movie was popular” and q denote
“The movie will make a lot of money.” Translate the following propositions
into English sentences.

1. p → q

2. ∼p → ∼q

3. ∼q → ∼p

4. q → p

5. ∼p ∨ q

6. p ∧ ∼q

In the following exercises, let p denote “Pat eats a burger for dinner” and q
denote “Pat is too full for dessert.” Translate the following sentences into
logical symbols.

7. If Pat eats a burger for dinner, she will be too full for dessert.

8. If Pat does not eat a burger for dinner, she will not be too full for
dessert.

9. If Pat is too full for dessert, then she ate a burger for dinner.

10. If Pat is not too full for dessert, then she did not eat a burger for
dinner.

11. If Pat is too full for dessert, then she did not eat a burger for dinner.

12. Pat being too full for dessert implies that she ate a burger for dinner.

13. Pat not being too full for dessert implies that she did not eat a burger
for dinner.

14. Pat not eating a burger for dinner implies that she will not be too full
for dessert.

15. Pat eating a burger for dinner implies that she will be too full for
dessert.

16. Either Pat does not eat a burger for dinner or she will be too full for
dessert.

17. Either Pat is not too full for dessert or she ate a burger for dinner.
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18. Either Pat is too full for dessert or she did not eat a burger for dinner.

19. The following conditional statement is true: If Pat is eaten by bears,
she will not finish her marking. Given that, answer the following
questions.

(a) Pat is eaten by bears. Did she finish her marking?

(b) Pat is not eaten by bears. Did she finish her marking?

(c) Pat finished her marking. Was she eaten by bears?

(d) Pat did not finish her marking. Was she eaten by bears?

20. The following conditional statement is true: If Rich is asleep, then he
is not playing ping-pong. Given that, answer the following questions.

(a) Rich is playing ping-pong. Is he asleep?

(b) Rich is asleep. Is he playing ping-pong?

(c) Rich is not asleep. Is he playing ping-pong?

(d) Rich is not playing ping-pong. Is he asleep?

Of course, for the previous questions, I chose situations in which you can use
common sense to determine the answer. However, the true test of whether
you understand the concept is to replace the above propositions by complete
nonsense.

21. The following conditional statement is true: If ettercaps are green,
then toves are slithy. Given that, answer the following questions.

(a) Toves are slithy. Are ettercaps green?

(b) Toves are not slithy. Are ettercaps green?

(c) Ettercaps are green. Are toves slithy?

(d) Ettercaps are red. Are toves slithy?

22. The following conditional statement is true: If the hare reads the
Times Colonist, the tortoise will take out the recycling. Given that,
answer the following questions.

(a) The hare does not read the Times Colonist. Will the tortoise
take out the recycling?
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(b) The hare reads the Times Colonist. Will the tortoise take out
the recycling?

(c) The tortoise takes out the recycling. Does the hare read the
Times Colonist?

(d) The tortoise is not taking out the recycling. Does the hare read
the Times Colonist?

Given the conditional statement, “If frattling is non-responsive, then the
runges must be strunking”, write the corresponding English sentences for
the following.

23. The contrapositive (∼q → ∼p)

24. The converse (q → p)

25. The inverse (∼p → ∼q)

26. The “or” form (∼p ∨ q)

27. Given the conditional statement, “If Bossy is mooing, she must be
a cow,” which of the four following statements is the contrapositive
(∼q → ∼p)?

(a) If Bossy is not a cow, she is not mooing.

(b) If Bossy is a cow, then she is mooing.

(c) If Bossy is mooing, then she must be a cow.

(d) If Bossy is not mooing, then she must not be a cow.

28. Given the conditional statement, “If Bossy is mooing, she must be a
cow,” which of the four following statements is the converse (q → p)?

(a) If Bossy is not a cow, she is not mooing.

(b) If Bossy is a cow, then she is mooing.

(c) If Bossy is mooing, then she must be a cow.

(d) If Bossy is not mooing, then she must not be a cow.

29. If the statement “If Bossy is mooing, then she must be a cow,” is a
true statement, which of the four following statements is also true?

(a) If Bossy is not a cow, she is not mooing.

(b) If Bossy is a cow, then she is mooing.
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(c) Either Bossy is mooing or she is a cow.

(d) If Bossy is not mooing, then she must not be a cow.

30. Which of the following is the correct “or” form for the conditional “If
Bossy is mooing, then she must be a cow”?

(a) Bossy is a cow or she is not mooing.

(b) Bossy is not a cow or she is not mooing.

(c) Bossy is not a cow or she is mooing.

(d) Bossy is a cow or she is mooing.

31. If the statement “If Bossy is mooing, then she must be a cow” is a
true statement, which of the following cannot occur?

(a) Bossy is mooing and she is a cow.

(b) Bossy is mooing and she is not a cow.

(c) Bossy is not mooing and she is not a cow.

(d) Bossy is not mooing and she is a cow.

32. Consider the following “or” form statement, “Either Superman has a
cape or he cannot fly.” Which of the following is the correct form of
the corresponding conditional?

(a) If Superman does not have a cape, then he cannot fly.

(b) If Superman has a cape, then he can fly.

(c) If Superman can fly, then he has a cape.

(d) If Superman cannot fly, then he doesn’t have a cape.

33. Consider the conditional “If John has the flu or misses the bus, he
will be late for work”. Which of the following is the corresponding
contrapositive statement (∼q → ∼p)?

(a) If John is late for work, then he had the flu or missed the bus.

(b) If John is late for work, then he did not have the flu or did not
miss the bus.

(c) If John is not late for work, then he did not have the flu or did
not miss the bus.



2.7. THE CONDITIONAL 143

(d) If John is not late for work, then he did not have the flu and did
not miss the bus.

34. Consider the conditional “If Rich doesn’t show his work or makes a
mistake, then he will not get full credit”. Which of the following is
the corresponding contrapositive statement (∼q → ∼p)?

(a) If Rich received full credit, then he showed his work and did not
make a mistake.

(b) If Rich received full credit, then he showed his work or did not
make a mistake.

(c) If Rich did not get full credit, then he didn’t show his work and
made a mistake.

(d) If Rich did not get full credit, then he didn’t show his work or
made a mistake.

35. Consider the conditional “If Pat is late and has not called her hus-
band, he will be worried”. Which of the following is the corresponding
contrapositive statement (∼q → ∼p)?

(a) If Pat’s husband is not worried, then she is not late and did call
him.

(b) If Pat’s husband is not worried, then she is not late or did call
him.

(c) If Pat’s husband is worried, then she is late and has not called
him.

(d) If Pat’s husband is not worried, then she is late and did not call
him.

36. Consider the conditional “If grunkles are circular, then runges are
square and triptrops are blue”. Which of the following is the corre-
sponding contrapositive statement (∼q → ∼p)?

(a) If runges are not square and triptrops are not blue, then grunkles
are not circular.

(b) If runges are not square or triptrops are not blue, then grunkles
are circular.

(c) If runges are not square or triptrops are not blue, then grunkles
are not circular.
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(d) If runges are not square and triptrops are not blue, then grunkles
are circular.
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Answers to Section 2.7 Exercises

1. If the movie was popular, then it will make a lot of money. (Or: The
movie’s popularity implies that it will make a lot of money.)

2. If the movie was not popular, then it will not make a lot of money.

3. If the movie did not make a lot of money, then the movie was not
popular.

4. If the movie will make a lot of money, then it is popular.

5. The movie was not popular or it made a lot of money.

6. The movie was popular and it did not make a lot of money.

7. p → q

8. ∼p → ∼q

9. q → p

10. ∼q → ∼p

11. q → ∼p

12. q → p

13. ∼q → ∼p

14. ∼p → ∼q

15. p → q

16. ∼p ∨ q

17. ∼q ∨ p

18. q ∨ ∼p

19. a) No b) Maybe c) No d) Maybe

20. a) No b) No c) Maybe d) Maybe

21. a) Maybe b) No c) Yes d) Maybe

22. a) Maybe b) Yes c) Maybe d) No

23. If the runges are not strunking, then the frattling must be responsive.

24. If the runges are strunking, then the frattling is non-responsive.
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25. If the frattling is responsive, then the runges must not be strunking.

26. The frattling is responsive or the runges are strunking.

27. (a)

28. (b)

29. (a)

30. (a)

31. (b)

32. If you let p = “Superman does not have a cape”, then the answer is
(a). If instead you let p = “Superman cannot fly”, then the answer is
(c). So either (a) or (c) would be correct.

33. (d)

34. (a)

35. (b)

36. (c)
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2.8 The Biconditional

2.8.1 The Biconditional Connective

Consider the conditional “If you live in Victoria, then you live in BC.”
Remembering that the conditional has nothing to say if the first proposition
is false, then it is possible for you to not live in Victoria but to still live
in BC (Nanaimo, Vancouver, etc.). It is also possible for you to not live in
Victoria and also not live in BC (Calgary, AB or Toronto, ON).

Let’s now consider the conditional “If the temperature outside is below 0◦C,
then it is freezing outside.” If I were to use this sentence in everyday English,
I probably mean “If the temperature outside is below 0◦C, then it is freezing
outside AND if the temperature outside is not below 0◦C, then it’s not
freezing outside.” So we could probably do with a new proposition that
means “If p, then q and if ∼p, then ∼q.” This connective is called the
biconditional, p ↔ q.

The truth table for the biconditional, then, is

p q p ↔ q

0 0 1

0 1 0

1 0 0

1 1 1

So if p and q have the same value, then the biconditional is true and otherwise
it’s false. (In a sense, then, it’s the negation of “exclusive or”, p⊕ q.) There
are a number of ways to specify the biconditional in English:

(a) If and only if p, then q.

(b) p if and only if q.

(c) If p, then q, and vice versa.

(d) If p, then q, and if ∼p, then ∼q.

We’ll mostly be using the first construction, using “if and only if”.

Example: Draw the truth tables for p ↔ q and (p → q) ∧
(q → p). Are they logically equivalent? Also, are p ↔ q and
(p → q) ∧ (∼p → ∼q) logically equivalent?
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Answer: Let’s draw a big truth table:

p q p↔q ∼p ∼q p→q q→p ∼p→∼q (p→q)∧(q→p) (p→q)∧(∼p→∼q)

0 0 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 0 0 0

1 0 0 0 1 0 1 1 0 0

1 1 1 0 0 1 1 1 1 1

So by looking at the relevant columns, we can see that all three
logical expressions are equivalent. So (“if p, then q” AND “if q,
then p”) is equivalent to the biconditional.4

Example: Consider the following conditional statements.

(a) “If two lines are perpendicular, then the angle between them
is 90◦.”

(b) “If a polygon is a right triangle, then it has three sides.”

Which of these sentences would still be true if it were written in
the form of the biconditional?

Answer:

(a) would still be true since if two lines are not perpendicular,
then the angle between them is not 90◦.

(b) would not be true, since there are many triangles that aren’t
right triangles.

Example: The following biconditional statement is true: “If
and only if Pat finishes her marking, she will not feel guilty.”
Given that, answer the following questions.

(a) Pat feels guilty. Did she finish her marking?

(b) Pat does not feel guilty. Did she finish her marking?

(c) Pat finished her marking. Does she feel guilty?

(d) Pat did not finish her marking. Does she feel guilty?

4We could have also noted that since the converse (q → p) is logically equivalent to the
inverse (∼p → ∼q), then the last two columns should be identical to each other.
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Answer: Let p = “Pat finishes her marking” and q = “Pat does
not feel guilty.”

(a) So q is false, so p must also be false (the biconditional re-
quires that p and q have the same values). So Pat did not
finish her marking and the answer is “No.”

(b) q is true so p is true. Yes.

(c) p is true so q is true. And since q is “not guilty”, the answer
is No.

(d) p is false so q is false. And feeling “not-not guilty” is just
“guilty”, so Yes.

2.8.2 Programming Applications

The if-then construction is very common in programming. In pseudocode,
it usually takes the form

if x > 3 then print ‘‘Hello World’’

When you are debugging, it is tempting to think that this particular code
fragment behaves more like the biconditional: if “Hello World” was output,
was x > 3? It’s tempting to think so, but what if “Hello World” was printed
because of some other command? What then can we conclude about x?

Let’s examine this in more detail. Recall that if p → q is true and q is true,
we cannot conclude anything about p. Now consider the following piece of
pseudocode.

x = 4

y = 0

if x > 3 then y = 5

print ‘‘y = ’’, y

The output will be “y = 5”.

But, won’t the following pseudocode have the same output?

x = 2

y = 5

if x > 3 then y = 5
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print ‘‘y = ‘’, y

It will. The conditional statement did not change the value of y, but the
value was set to 5 initially, so the output is still be “y = 5”. Once again,
knowing that q is true does not allow us to conclude anything about p from
the conditional p → q. However, if the output was “y = 4” or any other
value not equal to 5, we can draw the conclusion that x was not greater than
3. If p → q is true and q is false, we know with certainty that p is false also.

The if-then-else construction behaves in a similar fashion. Consider the
following code fragment:

if x > 3 then y = 5

else z = 7

print ‘‘y = ‘’, y, ‘‘z = ’’, z

Only if the output tells you that y ̸= 5 or z ̸= 7 will you know with certainty
something about x.

For special cases, the if-then-else construction can yield more information.
Consider the following.

if x > 3 then y = 5

else y = 7

print ‘‘y = ’’, y

Since this piece of pseudocode assigns different values (5 or 7) to the same
variable y, finding out the resulting value of y will determine whether x was
greater than 3. In this special case, the if-then behaves like the biconditional:
if y = 5 then you know that x > 3, and if y ̸= 5, then x ≤ 3.
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Exercises for Section 2.8

Write out the truth tables for the following logical expressions. (You might
want to do it as just one or two really big tables.)

1. p → q

2. ∼p → ∼q

3. ∼q → ∼p

4. q → p

5. ∼p ∨ q

6. p ∧ ∼q

7. p ↔ q

8. ∼p ↔ ∼q

9. p⊕ q

10. p ∨ ∼q

11. ∼p⊕∼q

12. (p → q) ∧ (q → p)

13. (p → q) ∨ (q → p)

14. (p → q) ∧ (∼p → ∼q)

15. (p → q) ∨ (∼p → ∼q)

16. Looking at your results questions 1-15, which expressions are logically
equivalent to p ↔ q?

17. Looking at your results for questions 1-15, which expressions are logi-
cally equivalent to p → q?

18. Looking at your results for questions 1-15, which expressions are logi-
cally equivalent to q → p?

Consider the following conditional statements. I hope you agree that they
all make a certain amount of sense. However, if they were rewritten as
biconditional statements, would they continue to make sense? Answer
True or False.

19. If Barney is a dog, then he has four legs.
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20. If Rich is asleep, then he is not playing ping-pong.

21. If Alycia gets 90% or better as her final mark, she will get an A+.

22. If Bossy is mooing, then she is a cow.

23. If Pat sleeps in, she is late for class.

24. If Frank does not pay his bill on time, he will be charged a late charge.

25. If Susan bought her computer less than a year ago, her warranty is
still in effect.

26. If Raymond eats a burger for dinner, he will be too full for dessert.

In the following exercises, let p denote “Pat eats a burger for dinner” and
let q denote “Pat is too full for dessert.” Translate the following sentences
into logical symbols.

27. If and only if Pat eats a burger for dinner, she will be too full for
dessert.

28. Pat will not be too full for dessert if and only if she did not eat a
burger for dinner.

29. If Pat eats a burger for dinner, then she will be too full for dessert.

30. If Pat is not too full for dessert, then she did not eat a burger for
dinner.

Are the following two sentences biconditional statements? (In other words,
could you replace them by an equivalent “if and only if” construction?)

31. If Frank does not pay his bill on time, then he will be charged a late
charge, and if he does pay his bill on time, he will not be charged a
late charge.

32. If Alycia gets 90% or better as her final mark, she will get an A+, and
if she gets an A+, then she got 90% or better as her final mark.

33. The following conditional statement is true: If and only if Pat is eaten
by bears, she will not finish her marking. Given that, answer the
following questions.

(a) Pat is eaten by bears. Did she finish her marking?

(b) Pat is not eaten by bears. Did she finish her marking?

(c) Pat finished her marking. Was she eaten by bears?
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(d) Pat did not finish her marking. Was she eaten by bears?

34. The following conditional statement is true: If Rich is asleep, then
he is not playing ping-pong and vice versa. Given that, answer the
following questions.

(a) Rich is playing ping-pong. Is he asleep?

(b) Rich is asleep. Is he playing ping-pong?

(c) Rich is not asleep. Is he playing ping-pong?

(d) Rich is not playing ping-pong. Is he asleep?

35. The following conditional statement is true: Ettercaps are green if and
only if toves are slithy. Given that, answer the following questions.

(a) Toves are slithy. Are ettercaps green?

(b) Toves are not slithy. Are ettercaps green?

(c) Ettercaps are green. Are toves slithy?

(d) Ettercaps are red. Are toves slithy?

36. If the statement “If and only if Superman has a cape, then he can fly”
is a true statement, which of the following cannot occur? (You may
choose more than one.)

(a) Superman has a cape and he can fly.

(b) Superman has a cape and he cannot fly.

(c) Superman does not have a cape and cannot fly.

(d) Superman does not have a cape and can fly.
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Answers to Section 2.8 Exercises

Here are the truth tables for the expressions in questions 1 through 15.

p q ∼p ∼q p → q ∼p → ∼q ∼q → ∼p q → p ∼p ∨ q p ∧ ∼q

0 0 1 1 1 1 1 1 1 0

0 1 1 0 1 0 1 0 1 0

1 0 0 1 0 1 0 1 0 1

1 1 0 0 1 1 1 1 1 0

p q ∼p ∼q p ↔ q ∼p ↔ ∼q p⊕ q p ∨ ∼q ∼p⊕∼q

0 0 1 1 1 1 0 1 0

0 1 1 0 0 0 1 0 1

1 0 0 1 0 0 1 1 1

1 1 0 0 1 1 0 1 0

p q (p → q)∧(q → p) (p → q)∨(q → p) (p → q)∧(∼p → ∼q) (p → q)∨(∼p → ∼q)

0 0 1 1 1 1

0 1 0 1 0 1

1 0 0 1 0 1

1 1 1 1 1 1

16. By comparing columns, the following expressions are logically equiva-
lent to p ↔ q:

(a) ∼p ↔ ∼q

(b) (p → q) ∧ (q → p)

(c) (p → q)∧ (∼p → ∼q) (and you may or may not have noticed that
it’s also equal to ∼p⊕ q, which is kind of cool)

17. By comparing columns, the following expressions are logically equiva-
lent to p → q:

(a) ∼q → ∼p

(b) ∼p ∨ q

18. By comparing columns, the following expressions are logically equiva-
lent to q → p:
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(a) ∼p → ∼q

(b) p ∨ ∼q

19. False

20. False

21. True

22. False

23. False

24. True

25. True

26. False

27. p ↔ q

28. ∼q ↔ ∼p

29. p → q

30. ∼q → ∼p

31. Yes

32. Yes

33. a) No b) Yes c) No d) Yes

34. a) No b) No c) Yes d) Yes

35. a) Yes b) No c) Yes d) No

36. b) and d)
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Mixed Practice

1. Draw the gate diagram that corresponds to the Boolean expression

A+B C. Do not simplify!

2. Use a truth table to simplify the logical expression (∼p∧∼q)⊕(∼p∧q).

3. Consider the statement, “This apple is red.” Which of the following
are logically equivalent to that statement? Circle any correct answers.
You may choose more than one.

(a) It is not true that this apple is not red.

(b) This apple is red and this apple is red.

(c) This apple is red or this apple is not red.

(d) This apple is both red and shiny or this apple is red but not shiny.

(e) This apple is red or this apple is both red and shiny.

(f) This apple is red or this apple is not red but it is shiny.

4. Prove the following using the laws of logic. If you’re stuck, try using
a truth table for part marks.

A+ (C + 0)(B +B) = A C +A+A

5. The following statement is true: “If you eat at Joe’s, then you will
have a good meal.” Given that, can the following situations occur?
Answer “Yes” or “No”.

(a) You did not eat at Joe’s and you had a good meal.

(b) You did not eat at Joe’s and you had a bad meal.

(c) You ate at Joe’s and you had a bad meal.

6. Consider the statement p → q: “If you break a mirror, then you will
have seven years of bad luck.” Which of the following statements are
logically equivalent to p → q? Circle all of the correct answers.

(a) If you don’t break a mirror, you won’t have seven years of bad
luck.

(b) If you do not have seven years of bad luck, then you did not break
a mirror.
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(c) If you have seven years of bad luck, then you broke a mirror.

(d) Either you did not break a mirror or you had seven years of bad
luck or both.

7. Consider the statement: “If and only if a quantity is conserved, then
a symmetry is exhibited.” Answer the following questions with “Yes”,
“No”, or “Maybe”.

(a) A quantity is not conserved. Is a symmetry exhibited?

(b) A symmetry is exhibited. Is a quantity conserved?

(c) A symmetry is not exhibited. Is a quantity conserved?

8. Use a truth table to simplify the logical expression (p ↔ ∼q)∧(p ↔ q).
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Answers

1. Gate diagram for A+B C:

2. Here’s the truth table:

p q ∼p ∼q ∼p ∧ ∼q ∼p ∧ q (∼p ∧ ∼q)⊕ (∼p ∧ q)

0 0 1 1 1 0 1

0 1 1 0 0 1 1

1 0 0 1 0 0 0

1 1 0 0 0 0 0

The third and seventh columns are the same, so the expression sim-
plifies to ∼p

3. (a), (b), (d), and (e) are correct.

Here is the reasoning. Let p =“This apple is red” and q =“This apple
is shiny”.

(a) The sentence translates to the expression ∼(∼p), which is p by
complement.

(b) p ∧ p, which is p by idempotent.

(c) p ∨ ∼p, which is 1 by identity and does not equal p

(d) (p ∧ q) ∨ (p ∧ ∼q) ⇔ p ∧ (q ∨ ∼q) distributive

⇔ p ∧ 1 complement

⇔ p identity

(e) p ∨ (p ∧ q) ⇔ p absorption

(f) p ∨ (∼p ∧ q) ⇔ p ∨ q absorption, which does not equal p

4. A+ (C + 0)(B +B) = A C +A+A (this is the original statement)

A+ (C)(B +B) = A C +A+A identity
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A+ (C)(1) = A C +A+A complement

A+ C = A C +A+A identity

A+ C = A C +A idempotent

A+ C = A C +A complement

A+ C = C +A absorption (you can stop here if you wish)

A+ C = A+ C commutative (you can skip this step)

Please note that many different solutions are possible!

5. If p → q is true, you cannot have p true and q false, so the answers are
(a) Yes, (b) Yes, and (c) No.

6. (b) is the contrapositive, and (d) is the “or” form, so both (b) and (d)
are correct.

7. If the biconditional p ↔ q is true, then p and q are either both true or
both false. So the answers are: (a) No, (b) Yes, (c) No.

8. Here’s the truth table:

p q ∼q p ↔ ∼q p ↔ q (p ↔ ∼q) ∧ (p ↔ q)

0 0 1 0 1 0

0 1 0 1 0 0

1 0 1 1 0 0

1 1 0 0 1 0

So the expression simplifies to 0.
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Sequences and Series

3.1 Introduction to Sequences and Series

3.1.1 Sequences

Let’s start out with the definition of a sequence:

sequence: an ordered list of numbers, often with a pattern

In a sequence, the number of terms can be finite or infinite. If a sequence
is finite, then either the last term or the total number of terms must be
specified so that it’s clear where the sequence stops.

Example: Which of the following sequences are infinite? Which
are finite?

(a) 7, 11, 15, 19, . . .

(b) 1, 4, 9, 16, 25, 36, . . . 100

(c) 4, 2, 1, 1
2 ,

1
4 ,

1
8 ,

1
16 , ...

1
256

Answer: (b) and (c) are finite, because their last terms are given.
(a), however, goes on forever so is infinite.

To begin with, let’s examine some sequences in detail. We will begin by
looking at sequences that do have a pattern.

Example: What is the pattern for the following sequences?
What is the next term for each sequence?

161
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(a) 7, 11, 15, 19, . . .

(b) 1, 4, 9, 16, 25, 36, . . . 100

(c) 4, 2, 1, 1
2 ,

1
4 ,

1
8 ,

1
16 , ...

1
256

(d) 3,−6, 12,−24, . . .

(e) 3,−6,−15,−24, . . .

Answer:

(a) The pattern is that you add 4 to the previous term to get
the next term. The next term is then 23.

(b) The pattern is that if you say that“1” is the first term and
“4” is the second term, then n2 will be the nth term. So
the next term after 36 is 49.

(c) The pattern is to divide each term by two (or multiply by
one-half) to get the next term. So the term after 1/16 will
be 1/32.

(d) The pattern is to multiply each term by −2 to get the next
term. The next term is then 48.

(e) The pattern is to subtract 9 from the previous term, so the
next one is −33.

Note that in this previous example, the last two sequences looked very sim-
ilar for three of their first four terms. However, the third term is different
so the pattern for the two sequences is not the same and subsequent terms
could look very different.

3.1.2 Notation for Sequences

For each term in a sequence, we will use the notation of a lower-case a
followed by a subscript which is called the index. So, depending on what we
want our starting index to be, our sequence can be written as

a0, a1, a2 . . . , an

or
a1, a2, a3, . . . , an

or even
a5, a6, a7, . . . , an
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In this textbook, we will use the convention that the starting index is m, so
our sequences can be written as

am, am+1, am+2, . . . , an

Because we are examining sequences from a computing perspective, we
should be aware that computing languages don’t use a single convention:
many start counting at m = 0, while others start at m = 1.1 In this text-
book we will simply specify the start value of our index for each sequence
instead of using any one convention.

3.1.3 Counting the Terms in a Sequence

Since it’s possible to start the index for a sequence at any value, we need
to be careful when determining k, the total number of terms in a sequence.
The rule is:

#terms = last− first + 1

and since we are using the convention that m is the first index and n is the
final index (or, alternatively, the index of interest), then

k = n−m+ 1

Starting with Index of One

Let us consider a sequence that starts with an index of one:

a1, a2, a3, . . . , an

This convention has the advantage that if you label each term as follows:

first︷︸︸︷
a1 ,

second︷︸︸︷
a2 ,

third︷︸︸︷
a3 ,

fourth︷︸︸︷
a4 ,

fifth︷︸︸︷
a5 , . . . ,

final︷︸︸︷
an

you can see that the term a5 has an index n = 5 and is also the fifth term,
so the number of the term (fifth) and the index (5) are consistent with each
other. This makes it more difficult to make a counting error. Also, the total
number of terms in the sequence a1, a2, a3, . . . , an is given by k = n− 1+ 1,
so k = n and is consistent with what we would expect.2

1Examples of languages that have a starting index of zero are Python and the C family
(C, C++, C#). Languages which start their index values at one include Fortran, Smalltalk,
and Lua. There are also languages such as Algol which start at a user-defined value.

2In mathematics, it is most common to start counting with a1 being the first term.
Programming languages primarily designed for mathematics, such as Matlab, usually start
with an index of one.
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Starting with Index of Zero

However, let us now consider sequences that start with zero:

a0, a1, a2, a3, . . . , an

Numbering the terms, we find that

first︷︸︸︷
a0 ,

second︷︸︸︷
a1 ,

third︷︸︸︷
a2 ,

fourth︷︸︸︷
a3 ,

fifth︷︸︸︷
a4 , . . . ,

final︷︸︸︷
an

and a5 is no longer the fifth term. In fact, a5 is the sixth term, which is
why it is common in programming to separate the “count” of a term (first,
second, third, etc.) from the index value (0 for a0, etc.).

Also, the total number of terms in a0, a1, a2, a3, . . . , an is given by

k = n−m+ 1

= n− 0 + 1

= n+ 1

so k, the “count” of the term is no longer equal to n, the index of the
final term. So be warned: if you are not careful with this convention, you
are likely to make a type of mistake which programmers commonly call an
“off-by-one” error.

Starting with Index of Two or More

As we have seen, a5 is only the fifth term in sequences that start with an
index of one. If the sequence starts at some other value, then a5 could even
be the first or second term. This does lead to a small problem in that the
term an is commonly called the the nth term in a sequence, which is only
true for a starting index of one.3

3.1.4 Defining a Sequence

There are three ways to define a sequence:

1. List all of the terms, or enough terms to set up the pattern. If the
sequence is finite, then either the final term or the total number of
terms must be given.

3This leads to the awkward convention of calling a0 the zeroth term.
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2. Give a general formula for the nth term.

3. Give a recursive formula for the nth term.

We have already looked at sequences defined using the first method in the
examples given earlier. Let’s now examine the two types of formula, general
and recursive.

3.1.5 General Formula

A general formula is a formula that gives an as a function of n only. What
this means is that the only variable on the right-hand-side of the general
formula is the variable n, and all other values in the equations are constants.

Let’s look at the following examples to examine some sequences defined in
this way.

Example: Give the first four terms of the sequence given by the
general formula an = 4n+ 7 for n ≥ 0.

Answer:

an = 4n+ 7, so

a0 = 4× 0 + 7 = 7

a1 = 4× 1 + 7 = 11

a2 = 4× 2 + 7 = 15

a3 = 4× 3 + 7 = 19

The first four terms are then 7, 11, 15, and 19. This is the same
sequence that was given as part (a) in the first example of this
section.

Example: Give all terms of the sequence given by the formula
an =

(
1
3

)n
for 1 ≤ n ≤ 5.

Answer: This is a finite sequence, since restrictions have been
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placed on the values of n. The terms are then:

a1 =

(
1

3

)1

=
1

3

a2 =

(
1

3

)2

=
1

9

a3 =

(
1

3

)3

=
1

27

a4 =

(
1

3

)4

=
1

81

a5 =

(
1

3

)5

=
1

243

You can see from the previous examples that the general formula allows
you to calculate an for any value of n. The very useful thing about the
general formula is that you don’t need to know the previous term to cal-
culate a particular term. For instance, if you want to know a50 for the
sequence 7, 11, 15, 19, . . ., you can determine that the pattern is to add 4 to
the previous term to get the next term. However, to get a50, you’d have to
calculatea49 first, but a49 requires a48, and so on. But if you instead use the
formula an = 4n + 7 for n ≥ 0, which gives the same sequence, then a50 is
just

an = 4n+ 7

a50 = 4 · 50 + 7 = 207

and there’s no need to calculate preceding terms. Handy!4

3.1.6 Recursive Definition

A recursive formula gives a formula for the next term in terms of the previous
one. For example, in our old friend 7, 11, 15, 19, . . . , the next term is found
by adding 4 to the previous term: an = an−1+4. However, that’s not enough
information to uniquely define the series because you don’t know where to
start. A complete definition must include the first term also. Therefore, the

4It’s important to note, however, that a50 is not the fiftieth term. Because we are
starting our index from zero, a50 is the fifty-first term since k = n−m+1 = 50−0+1 = 51.
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recursive definition for our old friend 7, 11, 15, 19, . . . would be{
a0 = 7

an = an−1 + 4 for n ≥ 1

Recursive definitions, then, must specify the first term (or terms, when
necessary) and also the rule which allows you to calculate the next term
from the previous term or terms.

Example: Calculate the first four terms of the sequence given
by {

a0 = 3

an = (an−1 − 1)2 + 10 for n ≥ 1

Answer: The first term is already given, a0 = 3. Then

a1 = (3− 1)2 + 10 = 22 + 10 = 14

a2 = (14− 1)2 + 10 = 132 + 10 = 179

a3 = (179− 1)2 + 10 = 1782 + 10 = 31694

So the first four terms are 3, 14, 179, 31694.

Example: Give a recursive formula for the sequence 2, 6, 18, 54, . . .

Answer: The pattern is that the next term equals the previous
term times three. We can start our index at either 0 or 1, so
let’s choose 1. Therefore,{

a1 = 2

an = 3an−1 for n ≥ 2

Recursive definitions have the same drawback that we’ve seen before: if we
want to know the 200th term, we need to calculate the 199th first, and so on.
Only the general formula allows us to calculate each term directly without
knowing the previous one.

3.1.7 Fibonacci sequence

The Fibonacci sequence is the most famous example of a recursive sequence:
1, 1, 2, 3, 5, 8, 13, . . .
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The pattern can be quite difficult to spot – you get the next term from the
sum of the two previous terms. The recursive formula for this sequence is
therefore 

a1 = 1

a2 = 1

an = an−1 + an−2 for n ≥ 3

Here, the first two terms must be given to start off with so that you are
then able to calculate the third term from the previous two.

3.1.8 Series

A series is the sum of the terms of a sequence, which can be finite or infinite.
Here are two examples:

(a) 16 + 20 + 24 + 28 + . . .+ 64

(b) 1 + 1
3 + 1

9 + 1
27 + ...

You can see that the first example is a finite series, while the second one is
infinite.

3.1.9 Notation for Series

The sum of the first k terms of a sequence is denoted by Sk (also sometimes
called the kth partial sum). If the series is finite, it could be the sum of
all of the terms. S∞ is how we write the sum of an infinite series, like the
second example above.

Example: For the series 16 + 20 + 24 + 28 + . . .+ 64, calculate
S3 and S4.

Answer:

S3 = 16 + 20 + 24 = 60

S4 = 16 + 20 + 24 + 28 = 88

However, it’s easy to see that this method becomes very cumbersome for
large values of k. We’ll develop some more efficient methods for particular
types of series in the next two sections.
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3.1.10 Sigma Notation

It’s easy to take a sequence in list form and transform it into a series by
changing all of the commas to plus signs. However, what if you are given
the general formula instead? For example, let’s take 7, 11, 15, 19, . . . which
we know to be an = 4n + 3 for n ≥ 1. Since the general form is so useful
for finding an when n is large, it would be nice if we could retain that
information while writing our sum.

To do so, we’ll introduce a new notation called “sigma notation’. It uses
the Greek letter sigma (the uppercase one): Σ, which is commonly used to
mean “sum of’.

Let’s look at an example of sigma notation and discuss what all of the parts
mean. Consider the following sum:

5∑
i=1

(4i+ 3)

The letter i is an index here, and it runs from the value given at the bottom
of the sigma to the number at the top of the sigma in steps of 1. Here, i
runs from 1 to 5. We are summing, then, the value of 4i+ 3 for each value
of i as it runs from 1 to 5:

5∑
i=1

(4i+ 3) =

i=1︷ ︸︸ ︷
(4× 1 + 3)+

i=2︷ ︸︸ ︷
(4× 2 + 3)+

i=3︷ ︸︸ ︷
(4× 3 + 3)+

i=4︷ ︸︸ ︷
(4× 4 + 3)+

i=5︷ ︸︸ ︷
(4× 5 + 3)

= 7 + 11 + 15 + 19 + 23

= 75

Let’s look at more examples.

Example: Calculate
2∑

i=0
(2i− 5).
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Answer:

2∑
i=0

(2i− 5) =

i=0︷ ︸︸ ︷
(2× 0− 5)+

i=1︷ ︸︸ ︷
(2× 1− 5)+

i=2︷ ︸︸ ︷
(2× 2− 5)

= −5 + (−3) + (−1)

= −9

Example: Calculate
9∑

j=6
(8− j)2.

Answer:

9∑
j=6

(8− j)2 =

j=6︷ ︸︸ ︷
(8− 6)2+

j=7︷ ︸︸ ︷
(8− 7)2+

j=8︷ ︸︸ ︷
(8− 8)2+

j=9︷ ︸︸ ︷
(8− 9)2

= 4 + 1 + 0 + 1

= 6

Example: Calculate
16∑

k=12

3.

Answer:

16∑
j=12

3 =

k=12︷︸︸︷
3 +

k=13︷︸︸︷
3 +

k=14︷︸︸︷
3 +

k=15︷︸︸︷
3 +

k=16︷︸︸︷
3

= 15

The tricky thing about the last one is deciding how many terms there are.
Recall that you can either write out all of the possible values of the index,
or use the useful rule:

k = n−m+ 1

and as the last example had the index running from 12 to 16, then the
number of terms k is

k = 16− 12 + 1

k = 5
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Example: Write the following series in sigma notation:

4 + 9 + 16 + 25 + ...100

Answer: Let’s pick our index first. If we want to be lazy, instead
of starting our index at 0 or 1, we could start at 2 and our series
would be

10∑
k=2

k2

Other acceptable answers would involve changing our starting
point for the index to give

9∑
j=1

(j + 1)2

or
8∑

i=0

(i+ 2)2

or even
165∑

l=157

(l − 155)2

if 157 happens to be your favourite number.

Example: Write the following sequence in sigma notation:

1

3
+

1

4
+

1

5
+

1

6
+ . . .

Answer:
∞∑
j=3

1

j

To write an infinite series in sigma notation, you just replace the final value
of the index with ∞.
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Exercises for Section 3.1

Predict the next three terms of the following sequences.

1. 18, 16, 14, . . .

2. 1, 4, 9, 16, . . .

3. 12, 24, 48, 96, . . .

4. 144, 36, 9, . . .

5. 1,
√
2,
√
3, 2,

√
5,
√
6, ...

6. 5,−10, 20, . . .

7. 13, 25, 37, 49, . . .

8. 1
2 ,

1
3 ,

1
4 ,

1
5 , ...

Give a formula for the general term (the nth term an in terms of n) of the
following sequences. Use n = 1 as your starting index.

9. 1, 4, 9, 16, . . .

10. 1,
√
2,
√
3, 2,

√
5,
√
6, ...

11. 2, 4, 6, 8, . . .

12. 1
2 ,

1
3 ,

1
4 ,

1
5 , ...

Find the first four terms of the following recursively defined sequences.

13.

{
a1 = 2

an = an−1 + 5 for n ≥ 2

14.

{
a1 = 10

an = 3an−1 for n ≥ 2

15.


a1 = 2

a2 = 3

an = an−1 × an−2 for n ≥ 3

16.

{
a1 = 2

an = 1
an−1

+ 1 for n ≥ 2
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In each of the following, the general formula for the nth term of a sequence
is given. Find the first four terms.

17. an = 3n− 5 for n ≥ 1

18. an = 3n−2 for n ≥ 1

19. an = n! for n ≥ 1

20. an = 1
n2 for n ≥ 1

In each of the following, the general formula for the nth term of a sequence
is given. Calculate the specified terms.

21. Find a7 for the sequence an = 5
(
2n+1

)
for n ≥ 1

22. Find a100 for the sequence an = 4n+ 15 for n ≥ 1

23. Find a2500 for the sequence an = n+2
n+1 for n ≥ 1

24. Find a10 for the sequence an = 2n3 for n ≥ 1

Calculate S3 and S6 for the following series.

25. 3 + 6 + 9 + . . .

26. 1 + 4 + 9 + 16 + . . .

27. 5− 10 + 20− 40 + . . .

28. 5 + 3 + 1 + . . .

Write out each sum in full and then evaluate.

29.
7∑

n=3
n

30.
10∑
j=4

(−1)j

31.
4∑

i=0
2i

32.
25∑

k=20

(3k − 10)

Write each series in sigma notation. (Answers may vary.)

33. 1 + 8 + 27 + 64 + . . . 1000



174 CHAPTER 3. SEQUENCES AND SERIES

34. 1
2 + 1

3 + 1
4 + 1

5 + ...

35. 2 + 4 + 6 + 8 + . . .

36. 2 + 4 + 6 + 8

Evil alert! The following questions are just for those wanting a challenge.
This type of question will not be tested.

37. (nasty) Write the sequence 1, 4, 9, 16, . . . using a recursive definition.

38. (thorny) Write the sequence 1, 2, 6, 24, . . . using a general formula.

39. (tricksy) Consider the following sequence:

4, 5, 20, 100, 2000

(a) What’s the next term in this sequence?

(b) What’s the recursive formula for this sequence?
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Answers to Section 3.1 Exercises

1. 12, 10, 8 (pattern is to subtract 2)

2. 25, 36, 49 (nth term is equal to n2

3. 192, 384, 768 (multiply by 2)

4. 9
4 ,

9
16 ,

9
64 (divide by 4)

5.
√
7, 2

√
2, 3 (nth term is

√
n)

6. −40, 80,−160 (multiply by −2)

7. 61, 73, 85 (add 12)

8. 1
6 ,

1
7 ,

1
8

9. an = n2

10. an =
√
n

11. an = 2n

12. an = 1
n+1

13. 2, 7, 12, 17

14. 10, 30, 90, 270

15. 2, 3, 6, 18

16. 2, 32 ,
5
3 ,

8
5

17. −2, 1, 4, 7

18. 1
3 , 1, 3, 9

19. 1, 2, 6, 24

20. 1, 14 ,
1
9 ,

1
16

21. a7 = 1280

22. a100 = 415

23. a2500 =
2502
2501

24. a10 = 2000

25. S3 = 18, S6 = 63
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26. S3 = 14, S6 = 91

27. S3 = 15, S6 = −105

28. S3 = 9, S6 = 0

29.
7∑

n=3
n = 3 + 4 + 5 + 6 + 7 = 25

30.
10∑
j=4

(−1)j = 1 + (−1) + 1 + (−1) + 1 + (−1) + 1 = 1

31.
4∑

i=0
2i = 20 + 21 + 22 + 23 + 24 = 1 + 2 + 4 + 8 + 16 = 31

32.
25∑

k=20

3k − 10 = 50 + 53 + 56 + 59 + 62 + 65 = 345

33.
10∑
i=1

i3

34.
∞∑
j=2

1
j

35.
∞∑
k=1

2k

36.
4∑

k=1

2k

37. You could either do{
a1 = 1

an =
(√

an−1 + 1
)2

for n ≥ 2

or another possibility is{
a1 = 1

an = an−1 + 2n− 1 for n ≥ 2

38. an = n! for n ≥ 1

39. The next term is 200,000.
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a1 = 4

a2 = 5

an = an−1 × an−2
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3.2 Arithmetic Sequences and Series

3.2.1 Arithmetic Sequences

Let’s start out with a definition:

arithmetic sequence: a sequence in which the next term is
found by adding a constant (the common difference d) to the
previous term

Here are some examples of arithmetic sequences:

(a) 7, 11, 15, 19, . . .

(b) 11, 4,−3,−10, . . .− 59

(c) 12, 12.3, 12.6, 12.9, . . .

The first one has a common difference of 4, the second −7, and the third
0.3. Note that in each of them, we can find the common difference d by
taking any term and subtracting the previous term from it.

Example: For the following sequences, state whether each of
them is arithmetic.

(a) −3,−10,−17,−24, . . .

(b) 4, 5, 7, 10, . . .

(c) 2, 4, 8, 16, . . .

(d) 1
2 ,

1
3 ,

1
4 ,

1
5 , . . .

1
20

Answer:

(a) Yes, because the common difference d is −7.

(b) No, because you’re not adding the same number each time.

(c) No, because you’re multiplying by 2 to get the next term,
not adding.

(d) No, because the difference between each pair of terms is
different.

Again, you can define an arithmetic sequence in one of three ways: by listing
the terms, by giving a recursive definition, or by giving a general definition.
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3.2.2 Recursive Definitions for Arithmetic Sequences

Let’s look first at an example.

Example: Give a recursive definition for the sequence 2, 10, 18, 26, . . .

Answer: Recall that a recursive definition has two parts: listing
the first term and giving the pattern. In this case, the pattern is
adding d = 8 to the previous term to get the next term. We can
start our index anywhere, so let’s choose zero for this example.
The recursive definition is therefore{

a0 = 2

an = an−1 + 8 for n ≥ 1

To generalize, the recursive formula for any arithmetic sequence is{
am = < insert value here >

an = an−1 + d for n ≥ m+ 1

3.2.3 General Formulae for Arithmetic Sequences

Let’s examine the previous example in more detail to see if we can recognize
any patterns and come up with a general formula. Rewriting each term, we
get

2, 10, 18, 26, . . .

2 2 + 8, 2 + 8× 2, 2 + 8× 3, . . .

So the 3rd term equals the first plus 8 times 2, the 4th term equals the first
plus 8 times 3, and the nth term will equal the first plus 8 times (n− 1). In
other words,

2, 10, 18, 26, . . . an

2 2 + 8, 2 + 8× 2, 2 + 8× 3, . . . 2 + 8× (n− 1)

and so we find for this particular sequence, an = 2 + 8 × (n − 1), which
simplifies to an = 8n− 6.

We can generalize this formula: the nth term will equal the first plus d times
(n−m), so

an = am + (n−m) d where n ≥ m

for any arithmetic sequence.
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Example: Write a general formula for the sequence 3, 8, 13, 18, . . .

Answer: This sequence is arithmetic with the first term 3 and
common difference 5. Let’s use a starting index of zero.

an = am + (n−m) d

= a0 + (n− 0) d

= 3 + (n) 5

= 3 + 5n

= 5n+ 3

The general formula is then an = 5n+ 3 for n ≥ 0.

Example: What is the 50th term in the sequence in the sequence
3, 8, 13, 18, . . .?

Answer: This is the same sequence from the previous example.
We may then use the formula we derived, an = 5n+3 for n ≥ 0.
But we do have to be careful about our index n. Recalling that
the number of terms k is given by

k = n−m+ 1

where we used m = 0 as our starting index, then

50 = n− 0 + 1

n = 49

and so the 50th term will be a49.

an = 5n+ 3

a49 = 5× 49 + 3

= 245 + 3

= 248

The 50th term is 248.

Example: What is the common difference in the arithmetic
sequence in which the first term is 18 and the twelfth term is
−59?
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Answer: The easiest way to count these terms correctly is to
have a starting index of one, and then the first term is a1 and
the twelfth term is a12.

an = am + (n−m) d

a12 = a1 + (12− 1) d

−59 = 18 + (12− 1) d

−77 = 11d

d = −7

The common difference is −7.

Example: Which term has a value of 404 in the sequence−37,−28,−19, . . .?

Answer: Let’s use a starting index of one. So a1 is −37 and d
is +9. Then we want to find the value of n for which an equals
404.

an = am + (n−m) d

= a1 + (n− 1) d

404 = −37 + (n− 1) 9

441 = 9 (n− 1)

49 = n− 1

n = 50

The fiftieth term is 404.

3.2.4 Arithmetic Series

Recall that Sk is the sum of the first k terms of a series. Let’s look at a
couple of examples of arithmetic series to see if we can identify any patterns.

Suppose we wish to take some partial sums of the series 2+10+18+26+ . . ..
Let’s first calculate S6. We could just find the first six terms and add them
up, but notice the following:

S6 = 2 + 10 + 18 + 26 + 34 + 42

The sum of the first and last numbers is 44. The sum of the second and
second-to-last is also 44. So is the sum of the third and third-last. So when
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you take the terms in pairs, each pair has the same sum, (am + an), and
there are k/2 pairs in total. Then

Sk =
k

2
(am + an)

What if, however, there are an odd number of terms? Let’s also calculate
S7:

S7 = 2 + 10 + 18 + 26 + 34 + 42 + 50

The sum of the first and last is 52, as is the sum of the each “inner pair’.
Notice that the middle, unpaired value, is 1

2 of 52. So in a sense, the middle
term is 1

2 of a pair, for a total of 31
2 pairs. But that’s just 7/2, which is our

k/2 in the original formula! So we’re still good. The relationship

Sk =
k

2
(am + an)

still works, for both odd and even values of k.

Generalizing, we find that

Sk =
k

2
(am + an)

where k can be even or odd and

k = n−m+ 1 for n ≥ m

Example: Find the sum of the first forty terms of the series
2 + 10 + 18 + 26 + . . ..

Answer: This is just the same sequence as before, with first
term am = 2 and common difference d = 8. In order to use our
previous formula, however, we need to calculate the last term
an. If we start with an index of one, then the fortieth term will
be a40, and we will need that value to calculate S40.

an = am + (n−m) d

= a1 + (n− 1) d

a40 = 2 + 39× 8

= 314
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So,

Sk =
k

2
(am + an)

S40 =
40

2
(2 + 314)

= 20× 316

= 6320

The sum of the first forty terms is 6320. (Much easier than
writing out the first forty terms and adding them up!)

In the previous example, we used the formula for an to calculate the last
term and put its value into the formula for Sk. We could do that in a more
general way:

Sk =
k

2
(am + an)

=
k

2
[am + (am + (n−m) d)]

=
k

2
[2am + (n−m) d]

and the last expression, which gives Sk as a function of the first term, the
number of terms, and the common difference, can also be used to evaluate
series.

Example: Find the sum of the first one hundred terms of the
sequence 5,−6,−17,−28, . . . .

Answer: This sum will just be 5 + −6 + −17 + −28 + . . ., with
am = 5, d = −11, and k = 100. If we start our index at one,
then

k = n−m+ 1

100 = n− 1 + 1

n = 100

and we can substitute this into the equation for Sk:

Sk =
k

2
[2am + (n−m) d]

S100 =
100

2
[2× 5 + 99× (−11)]

= −53950
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Example: Calculate
18∑
j=3

5n+ 10.

Answer: The first term will be for j = 3 and will equal 5(3)+10 =
25. Next is j = 4 and will equal 5(4) + 10 = 30, j = 5 equaling
5(5) = 35, and so on. The last term will be for j = 18 and will
equal 5(18) + 10 = 100.

In other words, our series is 25+30+35+. . . 100. Is it arithmetic?
Yes, with common difference d = 5.

What else do we need for our calculation? The number of terms
is

k = n−m+ 1

k = 18− 3 + 1

k = 16

Then

Sn =
n

2
(am + an)

S16 =
16

2
(25 + 100) = 1000

Example: Pat the math instructor asks her students to do five
word problems the first week, six the second week, seven the
third week, and so on, increasing the number of word problems
each week by one.

(a) How many word problems will diligent students be doing in
the last week of classes (the nth11 week)?

(b) How many word problems will diligent students have com-
pleted during the course of the term (11 weeks)?

Answer:

(a) The number of word problems is a sequence: 5, 6, 7, . . . . In
fact, it’s an arithmetic sequence with am = 5 and d = 1. If
we start our counting from one, then in the eleventh week,

an = am + (n−m) d

an = a1 + (n− 1) d

a11 = 5 + 10× 1

= 15
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Diligent students will solve 15 word problems in the last
week of classes.

(b) The total number of word problems solved is

Sk =
k

2
(am + an)

S11 =
11

2
(5 + 15)

= 110

Diligent students will have solved 110 word problems in
total.

3.2.5 Summary

For an arithmetic sequence, the nth term is given by

an = am + (n−m) d for n ≥ m

For an arithmetic series, the sum of the first k terms (kth partial sum) is

Sk =
k

2
(am + an)

or

Sk =
k

2
[2am + (n−m) d]

where k = n−m+ 1 and n ≥ m.
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Exercises for Section 3.2

State whether the following sequences are arithmetic or not. If they are,
state the first term and common difference.

1. 8, 9, 11, 13, 16, . . .

2. −3,−10,−17,−24, . . .

3. 3, 6, 12, 24, . . .

4. 1, 2, 6, 24, . . .

5. 81, 72, 63, 54, . . .

6. 1, 54 ,
3
2 ,

7
4 , 2,

9
4 , ...

Give both the general formula and the recursive formula for the nth term
an of the following arithmetic sequences. Assume that the first term of the
sequence is a1. For the general formula, be sure to simplify your answer.

7. 1, 3, 5, 7, . . .

8. 5,−6,−17,−28, . . .

9. −40,−37,−34,−31, . . .

10. 24, 28, 32, 36, . . .

For the following arithmetic sequences, calculate a50 and a261, assuming that
the first term is a1.

11. 18, 16, 14, 12, . . .

12. 12, 12.3, 12.6, 12.9, . . .

State whether the following recursively defined sequences are arithmetic or
not. (Is there an easy way to tell?)

13.

{
a0 = 5

an = an−1 + 4 for n ≥ 1

14.

{
a1 = 12

an = 2an−1 for n ≥ 2

15.

{
a1 = 75

an = an−1 − 20 for n ≥ 2
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16.

{
a0 = 6

an = an−1 + 1 for n ≥ 1

17.

{
a0 = 7

an = 2− an−1 for n ≥ 1

18.

{
a1 = 3

an = (an−1)
2 for n ≥ 2

19. For the following sequence, calculate the 201st term: 5, 15, 25, 35, . . .

20. For the following sequence, which term equals 137? 1, 9, 17, 25, . . .

21. What is the common difference for the arithmetic sequence with a1 =
200 and a12 = −240?

22. Calculate the first term for the arithmetic sequence with common dif-
ference 7 whose sixteenth term is 102.

23. Calculate the first four terms of the arithmetic sequence in which the
sixth term is 17 and the sixtieth term is 179.

24. Calculate the first four terms of the arithmetic sequence in which the
one hundredth term is 403 and the sixty-fourth term is 259.

25. Give a general formula for the arithmetic sequence in which the twen-
tieth term is −107 and the thirty-fifth term is −152.

26. Give a recursive formula for the arithmetic sequence in which the
eleventh term is 44 and the fifty-second term is 290.

27. Calculate S20 for the series 100 + 97 + 94 + . . .

28. Evaluate the series 12 + 17 + 22 + . . . 82.

29. Evaluate the series 144 + 138 + 132 + . . . 78.

30. Calculate S100 for the series −20− 16− 12− . . .

31. Calculate the sum of the odd numbers between 100 and 500.

32. Find the sum of the integers from 50 to 125, inclusive.

Calculate the following sums.

33.
53∑
k=0

(5k − 1)
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34.
92∑

j=10
6j

35.
140∑
i=30

(2i+ 7)

36.
502∑
k=3

(17− 3k)

37. In a supermarket display, there are 37 cans in the bottom layer, 35
in the next layer up, 33 in the next, and so on. How many layers are
there if there are 7 cans in the top row?

38. In the previous problem, how many cans are there altogether?

39. In an old-fashioned theatre, there are 25 seats in the first row, 26 in
the next, 27 in the one after, and so on. If there are 20 rows in total,
how many seats are there altogether?
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Answers to Section 3.2 Exercises

1. not arithmetic

2. yes, d = −7

3. no

4. no

5. yes, d = −9

6. yes, d = 1
4

7. an = 2n− 1 and

{
a1 = 1

an = an−1 + 2

8. an = 16− 11n and

{
a1 = 5

an = an−1 − 11

9. an = 3n− 43 and

{
a1 = −40

an = an−1 + 3

10. an = 4n+ 20 and

{
a1 = 24

an = an−1 + 4

11. an = 20− 2n, so a50 = −80 and a261 = −502

12. an = 11.7 + 0.3n, so a50 = 26.7 and a261 = 90

13. first four terms are 5, 9, 13, 17, so arithmetic with d = 4

14. first four terms are 12, 24, 48, 96, so not arithmetic

15. first four terms are 75, 55, 35, 15, so arithmetic with d = −20

16. first four terms are 6, 7, 8, 9, so arithmetic with d = 1

17. first four terms are 7,−5, 7,−5, so not arithmetic

18. first four terms are 3, 9, 81, 6561, so not arithmetic

19. an = 10n− 5, so a201 = 2005

20. an = 8n− 7, so n = 18

21. d = −40
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22. a1 = −3

23. a1 = 2 and d = 3, so the first four terms are 2, 5, 8, 11

24. a1 = 7 and d = 4, so the first four terms are 7, 11, 15, 19

25. an = −3n− 47

26.

{
a1 = −16

an = an−1 + 6

27. S20 = 1430

28. S15 = 705

29. S12 = 1332

30. S100 = 17800

31. S200 = 60000

32. S76 = 6650

33. S53 = 7101

34. S83 = 25398

35. S111 = 19647

36. S500 = −370, 250

37. n = 16

38. S16 = 352

39. S20 = 690
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3.3 Geometric Sequences and Series

3.3.1 Geometric Sequences

Let’s start out with a definition:

geometric sequence: a sequence in which the next term is
found by multiplying the previous term by a constant (the com-
mon ratio r)

Here are some examples of geometric sequences:

(a) 9, 18, 36, 72, . . .

(b) 12, 18, 27, 812 , . . .

(c) 10,−30, 90,−270, . . . ,−196830

(d) −3,−12,−48,−192, . . .

(e) 48,−36, 27, . . .

The common ratios of each of these sequences, in order from a) to e), is 2, 3
2 ,

−3, 4, −3
4 , respectively. Note that in each of them, we can find the common

ratio r by taking any term and dividing it by the previous term.

Like any other sequences, geometric sequences can be finite or infinite. Ex-
ample c) above is finite, as the last term is specified. The others are infinite
sequences.

Example: For each of the following sequences, state whether it
is arithmetic, geometric, or neither.

(a) 45, 15, 5, . . .

(b) 5, 3, 1,−1, . . .

(c) 1, 8, 27, 64, . . . , 1000

(d) −1, 1,−1, 1,−1, 1, . . .

Answer:

(a) Geometric, because the common ratio r is 1
3 .

(b) Arithmetic, because the common difference d is −2.
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(c) Neither, because there isn’t either a common difference or
ratio between terms. (In fact, the pattern is that an = n3

for n ≥ 1.)

(d) Geometric, because the common ratio r is −1.

Again, you can define a geometric sequence in one of three ways: by listing
the terms, by giving a recursive definition, or by giving a general definition.

3.3.2 Recursive Definitions for Geometric Sequences

Let’s look at an example.

Example: Give a recursive definition for the sequence 2, 10, 50, 250, . . .

Answer: Recall that a recursive definition has two parts: listing
the first term and giving the pattern. In this case, the pattern
is multiplying the previous term by r = 5 to get the next term.
Let’s use 0 as our starting index. The recursive definition is
therefore {

a0 = 2

an = 5an−1 for n ≥ 1

Generally, the recursive definition for any geometric sequence is{
am =< insert value here >

an = an−1 × r for n ≥ m+ 1

3.3.3 General Formulae for Geometric Sequences

Let’s examine the previous example in more detail to see if we can recognize
any patterns and come up with a general formula. Rewriting each term, we
get

2, 10, 50, 250, . . .

2, 2× 5, 2× 52, 2× 53, . . .

So the 3rd term equals the first times 5 squared, the 4th term equals the first
times 5 cubed, and the nth term will equal the first times 5 raised to the
(n − 1) power. In general, for sequences with first term am, the nth term
equals the first term times r raised to the (n−m) power, namely

an = amrn−m

for all geometric sequences.
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Example: Write a general formula for the sequence 3, 6, 12, . . .

Answer: This sequence is geometric with the first term 3 and
common ratio 2. If we choose n = 1 for our first term, then

an = amrn−m

= a1r
n−1

= 3× (2)n−1

The general formula is then an = 3× 2n−1 for n ≥ 1.

Example: What is the 20th term in the sequence in the sequence
3, 6, 12, . . .?

Answer: This is the same sequence from the previous example.
We may then use the formula we derived above with n = 20.

an = amrn−m

= a1r
n−1

a20 = 3× 220−1

a20 = 3× 219

a20 = 1, 572, 864

The 20th term is 1,572,864, which provides a nice example for
how fast geometric sequences can grow, even for small values of
r.

Example: Write a general formula for the sequence 8, 12, 18, 27, . . .
What is the fifteenth term in this sequence? The fiftieth?

Answer: If we start our counting at n = 1, then the fifteenth
term is a15 and the fiftieth term is a50.

an = amrn−m

= a1r
n−1

an = 8

(
3

2

)n−1

a15 = 8

(
3

2

)14

≈ 2335.43

a50 = 8

(
3

2

)49

≈ 3.40065× 109
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So the general formula is an = 8
(
3
2

)n−1
for n ≥ 1 and the fif-

teenth and fiftieth terms are approximately 2335.43 and 3.4×109,
respectively.

3.3.4 Geometric Series

Recall that Sk is the sum of the first k terms of a series. Let’s look at how
a formula for Sk is derived, using a series that starts with n = 1.

Sk = a1 + a2 + a3 + a4 + . . . + an−2 + an−1 + ak

Sk = a1 + a1r + a1r
2 + a1r

3 + . . . + a1r
k−3 + a1r

k−2 + a1r
k−1

Let’s take that last expression for Sk and multiply it by −r to get

−rSk = −a1r − a1r
2 − a1r

3 − a1r
4 − ...− a1r

k−2 − a1r
k−1 − a1r

k

Then if we add the rows for Sk and −rSk, we get

Sk = a1 +a1r +a1r
2 +a1r

3 + . . . +a1r
k−3 +a1r

k−2 +a1r
k−1

−rSk = −a1r −a1r
2 −a1r

3 −a1r
4 − . . . −a1r

k−2 −a1r
k−1 −a1r

k

Sk − rSk = a1 −a1r
k

since all of the terms in between these two (a1 and a1r
k) will cancel. Then

Sk − rSk = a1

(
1− rk

)
Sk (1− r) = a1

(
1− rk

)
and

Sk =
a1

(
1− rk

)
(1− r)

To generalize, the formula for the sum of the first n terms for any geometric
series that starts with first term am is

Sk =
am

(
1− rk

)
(1− r)

Example: Find the sum of the first 20 terms of the series 3 +
6 + 12 + . . .
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Answer: This is a geometric series with am = 3 and r = 2. We
want to find S20.

Sk =
am

(
1− rk

)
(1− r)

S20 =
3
(
1− 220

)
(1− 2)

= 3, 145, 725

The sum of the first 20 terms is 3,145,725.

Example: Find the sum of the first forty terms of the series
8− 12 + 18− 27 . . ..

Answer: This is a geometric series with am = 8 and r = −3
2 . We

want to find S40.

Sk =
am

(
1− rk

)
(1− r)

S20 =
8
(
1− (−1.5)40

)
(1− (−1.5))

= −3.53835× 107

The sum of the first forty terms is −3.54× 107.

3.3.5 Sum of an Infinite Geometric Series

Let’s take a look at the infinite series 1
2 + 1

4 + 1
8 + 1

16 + ... What happens
when we try to evaluate this sum using the Sk formula? We can put am = 1

2 ,
r = 1

2 , and n = ∞ into the formula, but we will run into a roadblock when
we try to evaluate (12)

∞.

Let’s take a closer look at the behaviour of (12)
n for large values of n. As n

gets larger, the fraction
(
1
2

)n
= 1

2n gets ever smaller. In fact, as n approaches
∞, (12)

n will approach zero.

This is true for any r provided that |r| < 1. (If you’re not familiar with the
absolute value bars, an equivalent expression is that −1 < r < 1.)

Recalling that

Sk =
am

(
1− rk

)
(1− r)

and letting the rn term go to zero, then

S∞ =
am
1− r

for− 1 < r < 1
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for any infinite geometric series with am the first term, provided that r
meets the restriction above.

Let’s now revisit the series that started this discussion and evaluate it in the
following example.

Example: Evaluate 1
2 + 1

4 + 1
8 + 1

16 + ...

Answer: This series is geometric with am = 1
2 and r = 1

2 . Then

S∞ =
am
1− r

=
1/2

1− 1/2
=

1/2

1/2
= 1

The sum of this series is 1.

Example: Evaluate 24 + 16 + 32
3 + . . .

Answer: This series is geometric with am = 24 and r = 2
3 .

S∞ =
am
1− r

=
24

1− 2
3

=
24
1
3

= 24× 3

1
= 72

Example: Evaluate 24− 16 + 32
3 + . . .

Answer: This series is identical to the previous one except that
r is now negative: am = 24 and r = −2

3 .

S∞ =
am
1− r

=
24

1−
(
−2

3

) =
24

1 + 2
3

=
24
5
3

= 24× 3

5
=

72

5
= 14.4

Example: Evaluate 12 + 18 + 27 + . . .

Answer: This series is geometric with am = 12 and r = 3
2 . You

may already realize what’s going on, but in case you don’t, let’s
naively put the values into the formula and see what we get:

S∞ =
am
1− r

=
12

1− 3
2

=
12

−1
2

= 12×−2

1
= −24

Wait! How can the sum of a bunch of positive number be nega-
tive? The answer is that our restriction for r is that it must be
between −1 and 1, but r = 1.5. Because r does not satisfy the
restriction, we cannot use the above formula for S∞. Indeed, if
you add up a bunch of positive numbers that are increasing as
you go up, you can see that the sum just keeps getting bigger as
we add more terms. You could then either say that the sum is
infinite (dicey) or “does not exist” (safer).
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But why is it safer to say “does not exist” in the last example? Let’s look
at three sums:

(a) 12 + 18 + 27 + . . .

(b) −12− 18− 27− . . .

(c) 12− 18 + 27 + . . .

Each term in (a) is getting more positive, so the sum of that sequence will
be +∞. Each term in (b) is getting more and more negative, so the sum
of that sequence will be −∞. But in the last term, the sum oscillates back
and forth: S1 = 12, S2 = −6, S3 = 21, S4 = −19.5, and so on. The sign of
Sk is either positive or negative depending on whether the number of terms
you’ve added is even or odd. Rather than debating whether infinity is odd
or even (?!), we will just say that the sum “does not exist”.

Example: Evaluate
∞∑
j=0

27
(
1
3

)j
.

Answer: Ick! The best place to start is to figure out the first few
terms to determine the pattern:

when j = 0, 27
(
1
3

)0
= 27× 1 = 27

when j = 1, 27
(
1
3

)1
= 27× 1

3 = 9

when j = 2, 27
(
1
3

)2
= 27× 1

32
= 3

so our sequence is 27, 9, 3, . . . This is geometric with am = 27
and r = 1

3 . Then

S∞ =
am
1− r

=
27

1− 1
3

=
27
2
3

= 27× 3

2
=

81

2
= 40.5

Example: Evaluate
∞∑
k=5

1
2k.

Answer: Once again, let’s figure out the first few terms to deter-
mine the pattern:

when k = 5, 1
2k = 1

25 = 2.5

when k = 6, 1
2k = 1

26 = 3

when k = 7, 1
2k = 1

27 = 3.5



200 CHAPTER 3. SEQUENCES AND SERIES

so our sequence is 2.5, 3, 3.5, . . .. Wait! This is arithmetic! Not
only that, but the numbers are increasing. So the sum will be
infinite, or if you prefer, the sum “does not exist”.

3.3.6 Repeating Decimals

Let’s examine 0.7 in some detail to see what we find:

0.7 = 0.777777777...

= 0.7 + 0.07 + 0.007 + 0.0007 + . . .

But this is just the sum of an infinite series with am = 0.7 and r = 0.1.
Rewriting a1 and r in fraction form (you’ll see why in a minute) gives am =
7
10 and r = 1

10 . Then

S∞ =
am
1− r

=
7
10

1− 1
10

=
7
10
9
10

=
7

10
× 10

9
=

7

9

So 0.7 = 7/9. Interesting!

Example: Find an exact fraction for 0.6.

Answer:

0.6 = 0.66666666...

= 0.6 + 0.06 + 0.006 + 0.0006 + ...

But this is just the sum of an infinite series with am = 6
10 and

r = 1
10 . Then

S∞ =
am
1− r

=
6
10

1− 1
10

=
6
10
9
10

=
6

10
× 10

9
=

6

9
=

2

3

So 0.6 = 2/3.

Example: Find an exact fraction for 0.18.

Answer:

0.18 = 0.1818181818...

= 0.18 + 0.0018 + 0.000018 + ...
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But this is just the sum of an infinite series with am = 18
100 and

r = 1
100 . Then

S∞ =
am
1− r

=
18
100

1− 1
100

=
18
100
99
100

=
18

100
× 100

99
=

18

99
=

2

11

So 0.18 = 2/11.

3.3.7 Summary

For a geometric sequence, the nth term is given by

an = amrn−m

for n ≥ m

For a geometric series, the sum of the first k terms (kth partial sum) is

Sk =
am

(
1− rk

)
(1− r)

where am is the first term

For an infinite geometric series, the sum is

S∞ =
am
1− r

provided that −1 < r < 1 and am is the first term.



202 CHAPTER 3. SEQUENCES AND SERIES

Exercises for Section 3.3

State whether the following sequences are geometric or not. If they are,
state the first term and common ratio.

1. 8, 9, 11, 13, 16, . . .

2. −3,−10,−17,−24, . . .

3. 3, 6, 12, 24, . . .

4. 1, 2, 6, 24, . . .

5. 81, 72, 63, 54, . . .

6. 72, 48, 32, ...

Give both the general formula and the recursive formula for the nth term an
of the following sequences. Use the convention n ≥ 1.

7. 1, 3, 9, 27, . . .

8. 64, 16, 4, 1, . . .

9. 3,−6, 12,−24, . . .

10. 24, 2.4, 0.24, . . .

For the following sequences, calculate a50 and a261, assuming that the first
term is a1.

11. 12, 18, 27, . . .

12. 12, 8, 163 , . . .

State whether the following recursively defined sequences are geometric or
not. (Is there an easy way to tell?)

13.

{
a1 = 5

an = an−1 + 4 for n ≥ 2

14.

{
a0 = 12

an = 2an−1 for n ≥ 1

15.

{
a0 = 75

an = 10an−1 for n ≥ 1
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16.

{
a1 = 7

an = 2− an−1 for n ≥ 2

17.

{
a1 = 8

an = −an−1 for n ≥ 2

18.

{
a0 = 3

an = (an−1)
2 for n ≥ 1

19. For the following sequence, calculate the 201st term: 5, 15, 45, . . .

20. For the following sequence, calculate the 20th term: 7,−14, 28, . . .

21. Calculate S20 for the series 100 + 50 + 25 + . . .

22. Calculate S20 for the series 100 + 200 + 400 + . . .

Calculate the sum, if it exists, for the following series.

23. −6 + 4− 8
3 + ...

24. 100 + 50 + 25 + . . .

25. 100 + 200 + 400 + . . .

26. 12 + 3 + 3
4 + . . .

Calculate the following sums, if they exist.

27.
10∑
k=0

2k+2

28.
∞∑
j=1

15
(
3
5

)j
29.

∞∑
i=2

25(0.1)i

30.
∞∑
i=0

4(−3)i

31. If the number of vampires in Transylvania doubles every month, then
how many vampires will be in Transylvania in 3 years, starting from
one individual? Comment on your result if the total population of
Transylvania is 2 million people.
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32. As I was going to St. Ives, I met a man with seven wives. Each wife
had seven sacks. Each sack had seven cats. Each cat had seven kits.
Kits, cats, sacks, wives: does this form a geometric sequence?

33. The paper used in the photocopier by Pat’s office is said to be 0.097 mm
thick. If it is folded over repeatedly, doubling its thickness each time,
how thick will the paper be if it’s folded 7 times? Bonus: why, then,
were the Mythbusters having so many problems trying to fold the
paper this many times?
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Answers to Section 3.3 Exercises

1. no

2. no

3. yes, r = 2

4. no

5. no

6. yes, r = 2
3

7. an = (3)n−1 and

{
a1 = 1

an = 3an−1

8. an = 64
(
1
4

)n−1
and

{
a1 = 64

an = an−1

4

9. an = 3(−2)n−1 and

{
a1 = 3

an = −2an−1

10. an = 24(0.1)n−1 and

{
a1 = 24

an = 0.1× an−1

11. an = 12
(
3
2

)n−1
, so a50 ≈ 5.1× 109 and a261 ≈ 7.3× 1046

12. an = 12
(
2
3

)n−1
, so a50 ≈ 2.8× 10−8 and a261 ≈ 1.97× 10−45

13. no

14. yes, with r = 2

15. yes, with r = 10

16. no

17. yes, with r = −1

18. no

19. an = 5(3)n−1, so a201 = 5(3)200 = 1.33× 1096

20. an = 7(−2)n−1, so a20 = 7(−2)19 = −3, 670, 016
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21. S20 = 200 (the exact answer is 26214375
131072 or 1.99980926513671875, but

if you round to three decimals, the answer is 200.000)

22. S20 = 104, 857, 500

23. S∞ = a1
1−r = −6

1−(−2/3) = −18
5 = −3.6

24. S∞ = 200

25. S∞ does not exist (r > 1)

26. S∞ = 16

27. S11 = 22 + 23 + 24 + ...+ 212 = a1(1−rn)
1−r = 22(1−211)

1−2 = 8188

28. S∞ = 22.5

29. S∞ = 5
18 = 0.27

30. S∞ does not exist (r < −1)

31. 3 years is 36 months, so we have a 36-term sequence starting with
1, 2, 4, 8, . . . The nth term will be an = 1(2)n−1, so the 36th term will
be a36 = 1(2)35 = 34, 359, 738, 368, which is a tad larger than the total
population of Transylvania.

32. 1 man

7 wives

#sacks = #wives×#sacks/wife = 7× 7 = 49

#cats = #sacks×#cats/sack = 49× 7 = 343

#kits = #cats×#kits/cat = 343× 7 = 2401

So kits, cats, sacks, and wives is the sequence 2401, 373, 49, 7, which is
geometric with four terms: a1 = 2401 and r = 1

7 .

33. The paper is initially 0.097 mm thick with no folds. After one fold,
the thickness will be 0.097×2, after two folds 0.097×2×2, etc. So our
starting term (zero folds) will be a0 = 0.097 and then will double with
r = 2 thereafter, where n is not only the index but also the number of
folds made. So an = 0.097(2)n, and the term with seven folds will be
a7 = 0.097(2)7 = 12.416, so we can conclude that the paper thickness
will be 12.4 mm, or just over 1 cm thick. (The Mythbusters realized
that the problems with paperfolding lie with the fold itself, and making
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the fold lie as flat as possible. If I remember correctly, they resorted
to C-clamps and hitting the fold with a hammer to flatten it.)
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Mixed Practice

1. Label the following sequences as “arithmetic”, “geometric” or “nei-
ther”.

(a) 1, 1, 2, 3, 5, 8, . . .

(b) 1
2 ,

1
6 ,

1
18 , . . .

(c) 58, 48, 38, . . .

2. Consider the sequence given by the following.

an = 30− 3n, 1 ≤ n ≤ 3

(a) Is this formula recursive or general?

(b) Calculate all terms of this sequence.

3. Evaluate the following sum, if it exists. If it doesn’t exist, state why
not. Show your work!

∞∑
i=2

8(−3)i

4. Calculate the first three terms of the following sequence.{
a1 = 3

an = (an−1)
2 for n ≥ 2

5. Write a recursive formula for the sequence defined below.

an = 7 ∗ 3n for n ≥ 1

6. State whether the following are arithmetic, geometric, or neither. Also,
give a formula for the nth term of the sequence. Use a starting index
of one.

(a) 15, 9, 3,−3, . . .

(b) 0, 12 ,
2
3 ,

3
4 ,

4
5 , . . .

(c) 48, 12, 3, 34 , . . .
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7. Calculate the following sums, if possible. If not possible, state why
not. Show your work.

(a)
∑4

j=0(3j)

(b) 2 + 4 + 6 + . . .+ 88

(c)
∑∞

m=0 300(0.99
m)

(d) 1
25 − 1

20 + 1
16 − 5

64 + . . .

8. Calculate the sum of the odd numbers between 1000 and 5000. Show
your work.
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Answers

1. (a) neither

(b) geometric

(c) arithmetic

2. (a) general

(b) 27, 24, 21

3. undefined, because it is geometric with r = −3, and |r| < 1 is false

4. 3, 9, 81

5.

{
a1 = 21

an = 3an−1 for n ≥ 2

6. (a) arithmetic
either an = 21− 6n (general) or{
a1 = 15

an = an−1 − 6 for n ≥ 2
(recursive)

(b) neither
an = n−1

n

(c) geometric,

either an = 48
(
1
4

)n−1
(general) or{

a1 = 48

an = 1
4an−1 for n ≥ 2

(recursive)
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7. (a)
∑4

j=0(3j) = 0 + 3 + 6 + 9 + 12 = 30

(b) arithmetic with d = 2 and n = 44, so S44 = 1980

(c) geometric with am = 300 and r = 0.99, so S∞ = 30000

(d) geometric with r = −5
4 , so sum does not exist

8. 1001 + 1003 + 1005 + . . .+ 4999
arithmetic series with d = 2
number of terms:
an = am + (n−m)d
let’s start with m = 1
4999 = 1001 + (n− 1)2
solving for n gives n = 2000
then Sn = n

2 (am + an)
and S2000 = 6 000 000



Chapter 4

Big O Notation and
Algorithmic Complexity

4.1 Big O and Rates of Growth

4.1.1 Basic Concepts

Before we get to definitions, let’s start off with a conceptual example. Sup-
pose you are moving and you want to rent a truck for a day. You have
looked up the rental rates and your options are:

� A flat rate of $80 per day.

� A rate of $2 per kilometre.

Which rate is better?

Hopefully it’s clear that the best rate must depend on how many kilometres
you will be driving. If you know that you will only be making one trip with
a total distance of 10 km, then you would only have to pay $20. However,
if you will be driving for more than 40 km, then the flat rate of $80 per day
would cost less than the rate per kilometre.

The big idea is that if, when you are first renting the truck, you are unsure
about how far you will be driving, then the safest bet is to go for the flat
rate. If you end up driving a short distance, then you could possibly have
saved money on the other rate, but if you end up driving a long distance,
then you could possibly pay a lot more than $80.

213
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The worst-case scenario, then, would be that you ended up driving for a
much longer distance than you had planned. But if you had taken that into
account when choosing the rate, you could choose the rate that would be
cheaper for the worst-case scenario.

Let’s take a look at the graph for this situation.

0 10 20 30 40 50 60
0

20

40

60

80

100

120

distance (km)

co
st

($
) flat rate of $80

rate of $2/km

safest choice

The point on the graph where the two lines intersect is the breakeven point,
where the two options cost the same amount of money. On the graph, we
can see that this occurs when the distance is 40 km and the cost is $80.
And as we’ve discussed, the safest choice under most circumstances is the
flat rate of $80. To find this safest choice, we look to the far right of the
graph, for large values of the x-coordinate. Whichever is the lowest curve
in that region of the graph will be the safest choice under the worst case (in
our example, it’s the scenario in which you end up driving more than you
anticipated).

4.1.2 Definition of Big O

In computing, rather than looking at minimzing cost we could use this same
idea to look at the number of steps or operations that a computer program
takes while running: the more steps required, the longer the program will
take to execute. In basic language,

Big O describes the number of steps required to complete an
algorithm for a task of size n when n gets large
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When studying Big O, we should also keep in mind that there may be other
considerations than having the shortest run time. If we are using a large data
set, we may instead be trying to minimize the amount of working memory
that our program requires. Other associated notations are Big Omega (Ω),
which essentially gives the best-case scenario, and Big Theta (Θ), which is
used when Big O and Big Omega are the same.

Why is it that in computing we are concerned with the worst-case scenario?
One reason is that Big O problems show up as bad performance in software.
For example, if you have designed a site where people can enter maintenance
histories for their cars, then you want to be prepared for the case that a rental
company uses your software to enter the histories for 11,000 cars. Users can
frequently come up with usage patterns that you didn’t anticipate and it is
wise to be prepared for that possibility.

4.1.3 Choosing the Most Efficient Procedure

Let us suppose that you need to put a list of items into alphabetical order,
and you are trying to decide on the best way to do this. You could, for
example, alphabetize the list by hand. You could also write a program to
sort the list for you. Which method should you choose?

� if the list is very short (5 items? 10?) and you only ever have to do
this task once, it is probably fastest to do it by hand

� if the list is long or you will need to do this many times in future, then
it may be worth the time to write the computer program

If you know in advance what the size of the list will be, then you should be
able to choose between these two methods with confidence. Where Big O
comes in is the situation in which you know you have to do this task, but
you are not sure what the size of the list will be.

Notice also that in this example, we were trying to minimize the amount
of time spent alphabetizing the list. You might make a different choice, for
example, if your goal was to improve your programming skills. You might
then choose to write a program even if the list is very short and you only
had to do the task once.

Example: You are at home and you have a flash drive con-
taining data that you need to give to your classmate on cam-
pus. You have two choices: upload the files to DropBox at
10 MBps (10 megabytes per second, which works out to 600 MB
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per minute) or walk 20 minutes to campus and hand the flash
drive to your classmate.

Use the graph below to answer the following questions

(a) What is the breakeven point, where the two methods will
take the same amount of time? (Just give a rough estimate
of the amount of data.)

(b) What is the most efficient method if you only have 5 GB
worth of data?

(c) What is the most efficient method if you have 25 GB worth
of data?

(d) Which method should you choose if you don’t remember
how much data you have but your classmate needs to know
right now which method you are going to choose?
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Answer:

(a) From the graph, it’s just over 10 GB (answer is exactly
12 GB or around 12 GB, depending on whether you use the
definition of 1 GB = 1000 MB or 1 GB = 1024 MB).

(b) Uploading is faster, because at 5 GB, the upload line is
below the walk line.
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(c) Walking to campus is faster, because at 25 GB, the walk
line is below the upload line.

(d) Walking is best, because you know it will take a maximum
of 20 minutes no matter how much data there is. Otherwise
your classmate might be stuck for hours waiting for the
download to finish.

In the previous example, if you uploaded the data to DropBox, doubling the
amount of data will double the time required. We could write this as an
equation in which the time t is a multiple of the amount of data n. In Big
O notation, we drop the coefficient we are multiplying n by and write this
as

O(n)

and say that this is “of order n”.

In contrast, walking the flashdrive to campus takes a constant amount of
time, so is a multiple of the number one. Big O notation then gives this as

O(1)

and we say that this is “of order one”. We have also determined that for
sufficiently large n, the graph of O(n) will always be above the graph of
O(1), so O(1) is the best choice in the worst-case scenario.

Other Big O relationships are possible, such as O(n2) and O(2n). We’ll
examine these in the next section.
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Exercises for Section 4.1

1. Many parts of the world have highways that are toll roads, so that
you have to pay a fee to drive on them. For example, before 2008
the Coquihalla Highway in southern BC had a toll for cars of $10 but
saved drivers at least an hour in travel time over the alternate route.

If you were driving in that part of BC, which route should you take
(Coquihalla vs. alternate route) if you are

(a) broke?

(b) running late and are not broke?

2. This graph shows the number of operations O required to complete a
task of size n elements for Programs 1, 2, and 3, where Program 1 is
the curved line, Program 2 is the straight line through the origin, and
Program 3 is the horizontal line.

elements n

op
er

at
io

ns
O

Program 1

Program 2

Program 3

Indicate whether the following statements are true or false.

(a) There is a certain size of task n where all three programs require
the same number of steps.

(b) Program 2 is a good choice for all sizes of n because it is the
“middle ground” between Programs 1 and 3.

(c) There is no value of n for which Program 2 is clearly the best
choice.
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(d) For large n, Program 3 will finish faster than the other two pro-
grams because the line for Program 3 is below the lines for the
other programs on the right-hand side of the graph.

(e) Whether Program 1 is more efficient than Program 3 depends on
the size of n.

3. You are living in an apartment block with a single washer and dryer
in the basement. You have the choice of doing your laundry one load
at a time using the machines downstairs, or you can drive to the laun-
dromat and use many machines at once. Each load of laundry takes
one hour to wash and dry using either your apartment’s machines or
the laundromat’s. The laundromat is 30 minutes away by car.

(a) Under what conditions is your apartment’s washer/dryer the fastest
way to do your laundry?

(b) Under what conditions will the two different options take about
the same amount of time?

(c) If you have many loads of clothing, which is the better option?

4. You are playing a computer game and you have a choice of playing a
fighter, a cleric, or a wizard. In combat, the fighter always does 50
points worth of damage no matter what level the fighter is. The cleric
does 10 points of damage per level, while the damage the wizard does
is equal to the square of the level.

(a) Which character choice (fighter/cleric/wizard) does the most dam-
age at low levels? At high levels?

(b) At what level is the breakeven point between fighter and cleric?

(c) At what level does the wizard start to do more damage than the
fighter?
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Answers to Section 4.1 Exercises

1. (a) alternate route

(b) Coquihalla

2. (a) true

(b) false

(c) true

(d) true

(e) true

3. (a) You only have one load.

(b) You have two loads.

(c) The laundromat.

4. (a) Low levels: fighter. High levels: wizard.

(b) At 5th level, both do the same amount of damage.

(c) At 8th level.
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4.2 Factorial and Exponential Growth

4.2.1 Review of Factorials

Before we compare rates of growth, we need to review a particular notation,
the factorial. To denote this, we use an exclamation point, such as

3!

To compute 3!, we multiply 3 by all positive integers less than 3, so

3! = 3× 2× 1

Similarly,
5! = 5× 4× 3× 2× 1

and
n! = n× (n− 1)× (n− 2)× . . .× 3× 2× 1

4.2.2 Comparing Rates of Growth

Recall that we are considering how the size of a task n changes the number
of steps or operations required to complete the task. To do this, let us
examine the following table, which shows how the functions n2, 2n, and n!
change as n increases.

polynomial exponential factorial

n n2 2n n!

1 1 2 1

2 4 4 2

3 9 8 6

4 16 15 24

5 25 32 120

10 100 1024 3628800

100 10000 1.267× 1030 9.33× 10157

From the table, we can see that although the polynomial n2 is growing quite
fast as n increases, the exponential 2n is growing faster still. But neither
the polynomial or the exponential have the same explosive increase as the
factorial function n!. We can see these patterns clearly in the following
graph.
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For this application course, the emphasis is to know the shape of each of the
Big O curves, to be able to rank them from slowest growing to fastest, and
given multiple curves be able to tell which one is most efficient as n gets
large, as in the following example.

Example: Consider the graph below with Curves 1, 2, and 3.
Match the Big O notation with its corresponding curve on the
graph.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7
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9
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elements n
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Curve 3

Curve 2

Curve 1

(a) O(n2)
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(b) O(1)

(c) O(n)

Answer:

(a) Curve 3

(b) Curve 1

(c) Curve 2

4.2.3 Why We Omit Coefficients

A good question is why do we omit the coefficients when writing Big O?
We had said in the previous section that if a function is equal to a multiple
of the amount of data n, then we drop the coefficient and write the Big
O notation as O(n). Let’s take a look at an extreme example, where our
functions are n!, 2n!, and 1000n!.

polynomial exponential factorial

n n! 2n! 1000n!

1 1 2 1000

2 2 4 2000

3 6 12 6000

4 24 48 24000

5 120 240 120000

10 3628800 7257600 3628800000

100 9.3× 10157 1.9× 10158 9.3× 10160

We can see from the table that the coefficient makes a big difference in the
entries when n is 10 or lower. But the moment that we have n = 100, then n!
itself is so large that the coefficient doesn’t really make that big a difference.
Do we really care that we have 10157 versus 10160? Those numbers are just
impossibly large and the difference in coefficients just gets lost in the noise.

4.2.4 Polynomial versus Exponential versus Factorial

Another good question is what happens if we are interested in n3, not just
n2. How about 3n or 5n instead of 2n? Does this make a different in terms
of the growth of that function?
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Let’s once again look at a table.

polynomial exponential factorial

n n2 n3 n4 2n 3n 4n n!

1 1 1 1 2 3 4 1

2 4 8 16 4 9 16 2

3 9 27 81 8 27 64 6

4 16 64 256 16 81 256 24

5 25 125 625 32 243 1024 120

10 100 1000 10000 1024 59049 1048576 3628800

100 104 106 108 1.3× 1030 5.2× 1047 1.6× 1060 9.3× 10157

Hopefully it’s clear from the table that once n gets large (and 100 items is
still not a very big task in many circumstances!), that although there are
differences in the numbers you get from the different polynomials (104, 106,
108), all of these numbers are orders of magnitude away from the exponential
numbers (1030, 1047, 1060). And both of these sets of numbers are dwarfed
in comparison with the growth of the factorial (10157).

Basically, if you have any polynomial nc, where c is a positive constant, it
will have a smaller growth pattern than any exponential bn, where b is a
positive constant. For small values of n, that may not yet be the case, but
as n gets sufficiently large, the exponential will always get larger than the
polynomial eventually.

4.2.5 Big O for Sums of Different Functions

What do you do if you are considering a procedure where the number of
steps is 2n + n2 + n. What would Big O be for this sum? Once again, let’s
look at a table:
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n 2n n2 2n + n2 + n

1 2 1 4

2 4 4 10

3 8 9 20

4 16 16 36

5 32 25 62

10 1024 100 1134

100 1.3× 1030 10000 1.3× 1030

By the time n = 100, which is the term that matters? Clearly 2n = 1.3×1030

is so much greater than either n2 = 10000 or n = 100 that 2n+n2+n is not
that much different in value than just 2n. For large n, those two functions
are not identical, true, but their values are so similar that the smaller terms
can be safely ignored for most applications.

Our method, then, is to locate in the sum the term that grows the fastest.
Then remove any coefficients, and what remains is the order of Big O.

Example: Consider procedures where the number of operations
needed for a task of size n is given below. Find Big O for each
procedure.

(a) 7n+ 3n2 + 3(2n)

(b) 7n+ 2n

(c) 5

(d) 5!

(e) 35n(n+ 1)

Answer:

(a) Of O(n),O(n2),and O(2n), the one with the fastest growth
is O(2n). We drop the leading coefficients.

(b) O(2n)

(c) O(1)

(d) O(1) - don’t be fooled, 5! is just a constant

(e) 35n(n+ 1) = 35n2 + 35n, so O(n2)
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Exercises for Section 4.2

1. Match the Big O notation with its corresponding curve on the graph.

elements n

op
er

at
io

ns
O

Curve 1

Curve 2

Curve 3

(a) O(n2)

(b) O(1)

(c) O(n)

2. Match the Big O notation with its corresponding curve on the graph.

5 10 15 20

50
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150

200

elements n
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O

Curve 1

Curve 2

Curve 3

(a) O(n2)

(b) O(n!)

(c) O(2n)

3. For a task of size n, Program A will always take one million steps to
run and Program B will take 5n2 steps to run. Indicate whether the
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following statements are true or false.

(a) For small n, Program B will run faster than Program A.

(b) For large n, Program B will run faster than Program A.

(c) Program A should always take the same amount of time to run.

(d) If you know the size of the task, you can choose whether Program
A or Program B will be more efficient.

(e) If you do not know the size of task, Program B is a good choice
because most of the time it will finish faster than Program A.

4. For each of the following procedures, the number of operations needed
for a task of size n is given below. Find Big O for each procedure.

(a) n2 + 2n+ 3n!

(b) 7n+ 5

(c) 50

(d) 20n2 + 40(2n)
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Answers to Section 4.2 Exercises

1. (a) Curve 1

(b) Curve 3

(c) Curve 2

2. (a) Curve 3

(b) Curve 1

(c) Curve 2

3. (a) true

(b) false

(c) true

(d) true

(e) false

4. (a) O(n!)

(b) O(n)

(c) O(1)

(d) O(2n)
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4.3 Logarithmic Growth

4.3.1 Growth of O(log n)

Suppose you need to find the position of a particular entry in an ordered
list.

Example: Consider the following list of fruit which is in alpha-
betical order:

apple, banana, grape, orange, peach, pear, plum

Where in the list is the entry grape?

Answer:

Method #1: Linear search

Start at the first one on the list and look at each entry
in order from left to right until you get to the entry of
interest.

This method is O(n). It has the advantage that it is
very straightforward to understand, but if you double
the size of the list, you will double the number of oper-
ations you need to perform in the case that the entry
that you want is at the bottom of the list.

Method #2: Binary search

The idea behind this method is that in each step, you
cut the length of the list in half when looking for your
entry. Let’s look at how that works for our list of fruit.

For our first step, the entry halfway through the list is
orange.

apple, banana, grape, orange, peach, pear,
plum

Now, orange is not what we want; we want grape.
And grape comes alphabetically before orange , so
we want the left part of the list, which is

apple, banana, grape
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We now repeat the previous steps. The middle entry
is banana, and grape comes after banana alphabeti-
cally, so we take the list to the right of banana, which
is

grape

We’ve now found the entry of interest.

Method #2 may seem much more cumbersome than Method #1, but it has
one huge advantage in that it is far more efficient. For example, if your list
has one million entries, you need a maximum of 20 searches to find your
entry of interest.

This may seem unbelievable, but take a look at the following table for the
worst case scenario. After the first step, we have cut the list in half (unless
of course the middle entry in the list is the one we want, in which case we
are done). We are now down to only 500 000 entries from our starting list
of 1 000 000. After the second step, we have only 250 000 entries left. If we
keep dividing the list in two relentlessly (and rounding up, because we can’t
have 0.5 of an entry), in the worst case scenario we take only twenty steps
to get to a list that is one item long, which must be the item that we are
looking for.

step size of list

1 500000

2 250000

3 125000

4 62500

5 31250

6 15625

7 7813

8 3907

9 1954

10 977

step size of list

11 489

12 245

13 123

14 62

15 31

16 16

17 8

18 4

19 2

20 1

Essentially, you are solving

2n = 1000000

which requires a new function called a logarithm.
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4.3.2 What is a logarithm?

Consider the equation

23 = 8

If we want to write an equivalent statement using logarithms, then we take
the base 2 and move it to the other side of the equation and it is then the
base of the logarithm:

3 = log2 8

The logarithm asks “what exponent on the base 2 gives the number 8?” and
since we know that 23 equals 8, the answer is 3.

Example: Evaluate (find the value of) the following expressions
containing logarithms.

(a) log2 4

(b) log2
1
2

(c) log10 1000

(d) log10 1

(e) log10 0

Answer:

(a) 2 because 22 = 4

(b) −1 because 2−1 = 1
2

(c) 3 because 103 = 1000

(d) 0 because 100 = 1

(e) this is undefined because there is no real number x for which
10x = 0

In math and most fields in science and technology, if the base is not specified,
then it is base 10. So

log 1000 = log10 = 3

On a calculator, then the “log” button uses base 10 and the “ln” button (for
“natural log) uses base e. The number e is irrational, like π, and is equal to

e = 2.718281828459045 . . .
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Unfortunately, computing does not use base 10 as the default. In most
if not all computing languages, the default is base e. In Java, for ex-
ample, to compute a logarithm using base e, you would use the function
Math.log(value) to find the natural logarithm (log base e) of a particular
value, and Math.log10(value) to find the logarithm of that value in base
10.

If you want to calculate the logarithm of any other base, you can use the
following relationship.

log2 x =
log x

log 2

Strangely enough this relationship holds whether you are using a calculator
where the default is base 10 or a computing program in which the base is e.
(You may have seen this relationship proven if you have taken a pre-calculus
course.)

In our initial example, we were trying to solve 2n = 1000000. Then

n = log2 1000000 =
log 1000000

log 2
≈ 19.932

Now we can see why our binary search algorithm had a maximum of 20
searches to find any value in a list of one million items, and why it has
O(log n).

4.3.3 Graph of y = log x)

What does the graph of O(log n) look like?

Let’s look at the following table.

n log2 n

1 0

2 1

4 2

8 3

16 4

If we do a sketch of these values, it looks like this:
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What about other bases? What do the logarithmic curves of other bases
look like? The following graph shows the curves y = log2(x), y = log3(x),
and y = log4(x).
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y = log2(x) y = log3(x)

y = log4(x)

In the above graph you can see that this family of curves all have the same
characteristic shape, where the curves are always increasing but the slope
gets smaller as the x-value increases. Don’t be fooled, though! The curves
do not have an upper limit: if you pick any constant value of y, the logarithm
curve will always grow above that value of x gets sufficiently large.

In the previous section, we found that the functions y = 2x, y = 3x, and
y = 4x had similar growth patterns, and when studying Big O we group them
all together under “exponential growth”. Similarly we group all “logarithmic
growth” functions together and we don’t worry overmuch about which base
is being used.
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4.3.4 Growth of O(log n)

In summary, the graph of logarithmic Big O is shown below.

elements n
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ns
O O(log n)

4.3.5 Growth of O(n log n)

There’s one other related function that we should also look at, O(n log n).
Sometimes this is called linearithmic growth. Let’s look at the following
table. The values for the logarithms have been rounded to one decimal
place.

n log n n log n n2

1 0 0 1

2 0.3 0.6 4

5 0.7 3.5 25

10 1.0 10.0 100

20 1.3 26.0 400

50 1.7 84.9 2 500

100 2.0 200.0 10 000

200 2.3 460.2 40 000

500 2.7 1349.5 250 000

1000 3.0 3000.0 1 000 000

If we do a sketch of these values, it looks like this:
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You can see that the graph is quite messy close to the origin, where many
of the curves cross each other. However, once n starts getting large, we
can see that the O(n log n) graph lies between the linear O(n) line and
the polynomial O(n2) curve. Although it is hard to see from the scale of
this graph, the O(n log n) curve is not a straight line: it is slightly curved
upwards. Having a Big O growth pattern of O(n log n) is therefore more
efficient than polynomial for large n, but not as good as linear growth.

4.3.6 Summary

The full sketch of all Big O rates of growth that we have studied looks like
this:
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Because of the scale of this graph, you may be able to see the slight curve
in O(n log n), but O(log n) looks deceptively like a straight line. If you were
to change the scale to zoom in on that region of the graph, then O(log n)
would look more like the characteristic curve that we have studied earlier.
The scale of this particular graph was chosen to emphasize that the factorial,
exponential, and polynomial curves have much larger growth patterns than
any of O(n log n), O(n), and O(log n). And the most efficient curve of all,
of course, is O(1), which we cannot see on this graph at all due to the scale
(it would basically lie right on top of the x-axis).
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Exercises for Section 4.3

1. Suppose you are trying to find an entry in an ordered list. You try
two different methods:

� Method 1: You start at the beginning of the list and go down
until you find the entry you want. This has O(n).

� Method 2: You go to the halfway point and deterine whether the
entry of interest is above or below the that middle entry. Then
divide that part of the list in half and check the halfway point.
Repeat until you’ve found the entry of interest. This is called a
binary search and has O(log n).

Answer the following questions about the above scenario.

(a) If the list has only 10 items and you are not using a computer for
this task, then the most efficient method is probably .

(b) If the list is very long, then the most efficient method is definitely
.

(c) For method 1, the best case scenario is that the entry you want
is located in the following place:

top / middle / bottom of the list

(d) For method 1, the worst case scenario is that the entry you want
is located in the following place:

top / middle / bottom of the list

(e) For method 2, the best case scenario is that the entry you want
is located in the following place:

top / middle / bottom of the list
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2. Evaluate the following logarithms. Give exact answers.

(a) log4(16)

(b) log10(10
6)

(c) log10(10)

(d) log2(256)

3. Match the Big O notation with its corresponding curve on the graph.
Curve 2 is a straight line.

elements n
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Curve 1 Curve 2

Curve 3

(a) O(log n)

(b) O(n log n)

(c) O(n)
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4. Indicate whether the following statements about the O(log n) curve
are true or false.

(a) If n gets large enough, the curve of O(log n) will eventually curve
downward.

(b) If n gets large enough, the curve of O(log n) will reach a certain
value and stay there.

(c) No matter how big n is, the curve of O(log n) will always increase.

5. This graph shows the number of operations O required to complete a
task of size n elements for Programs 1 and 2, where Program 1 is a
straight line and Program 2 is a curved line.

elements n
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Program 2

Program 1

Indicate whether the following statements are true or false.

(a) Program 1 could be O(n log n).

(b) Program 2 could be O(n log n).

(c) Program 2 could be O(log n).

(d) For large n, Program 1 will finish faster because the line for Pro-
gram 1 is below the line for Program 2 at the right-hand side of
the graph.

6. For each of the following procedures, the number of operations needed
for a task of size n is given below. Find Big O for each procedure.

(a) n2 + 2n log n+ 3 log n

(b) 7n+ 9n log n

(c) 7 + 2 log n
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(d) log n+ 3n

(e) n log n+ 3n!

(f) (n+ 1) log n
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Answers to Section 4.3 Exercises

1. (a) Method 1

(b) Method 2

(c) top

(d) bottom

(e) middle

2. (a) log4(16) = 2

(b) log10(10
6) = 6

(c) log10(10) = 1

(d) log2(256) = 8

3. (a) Curve 3

(b) Curve 1

(c) Curve 2

4. (a) false

(b) false

(c) true

5. (a) false, O(n log n) has a slight curve to it and the question said that
Program 1 is a straight line

(b) false

(c) true

(d) false

6. (a) n2

(b) n log n

(c) log n

(d) n

(e) n!

(f) n log n
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Mixed Practice

1. You need to buy a lawnmower, and you have researched the following
options. You could get a gas mower for around $250, an electric mower
for $200, or a robot mower for $1300.

Indicate whether the following statements are true or false.

(a) Which mower is the best choice depends on what your priorities
are.

(b) The larger the lawn is, the longer it will take you to mow if you
choose either the gas or electric mower options.

(c) If your lawn is twice as big as your neighbour’s, it will take you
twice as long as your nieghbour to mow it with either the gas or
electric mowers (provided of course that your neighbour is using
the same type of mower), so the time to mow would probably be
O(n).

2. Match the Big O notation with its corresponding curve on the graph.
Please note that curve 3 is a straight line.

elements n
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Curve 1 Curve 2 Curve 3

Curve 4

(a) O(n log n)

(b) O(log n)

(c) O(n2)

(d) O(n)

3. Evaluate the following logarithms. Give exact answers.

(a) log3(81)
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(b) log10(0.01)

(c) log2(1)

(d) log4(4)

4. The following graph shows the number of operations O required to
complete a task of size n for Programs 1 and 2. The number of opera-
tions required for Program 1 is a constant, so Program 1 is a horizontal
straight line.
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Indicate whether the following statements are true or false.

(a) It’s possible that for a certain value of n, the two programs are
equally efficient.

(b) Program 2 is a better choice than Program 1 for some circum-
stances.

(c) If Program 2 is O(log n), then for large values of n it could curve
downwards and become more efficient than Program 1.

5. If you look up algorithms on how to search a list, you will find that
in terms of operations, a linear search has O(n) while a binary search
has O(log n).

Based only on this information, which method is more efficient for
large values of n? Indicate the correct choice.

(a) linear seach

(b) binary search

(c) they both have the same efficiency

Why?
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(a) Because n grows faster than log n and bigger is better.

(b) There is not enough information to decide.

(c) Because log n grows slower than n and fewer operations means
that the program will run faster.

(d) Because n and log n grow at the same rate.

6. For each of the following procedures, the number of operations needed
for a task of size n is given below. Find Big O for each procedure.

(a) 2n + 5n!

(b) log n+ n

(c) 3 + 2 + 1!

(d) n(n+ log n+ 1)

(e) n log n+ 2n
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Answers

1. (a) true

(b) true

(c) true

2. (a) Curve 2

(b) Curve 4

(c) Curve 1

(d) Curve 3

3. (a) log3(81) = 4

(b) log10(0.01) = −2

(c) log2(1) = 0

(d) log4(4) = 1

4. (a) true

(b) true

(c) false

5. binary search, because log n grows slower than n and fewer operations
means that the program will run faster.

6. (a) O(n!)

(b) O(n)

(c) O(1)

(d) O(n2)

(e) O(n log n)
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p, q, r logical propositions

∼p negation of p

∧ and

∨ inclusive or

⊕ exclusive or

⇔ logically equivalent

→ conditional

↔ biconditional

A negation of A (Boolean)

· and (Boolean)

+ inclusive or (Boolean)

an nth term of a sequence
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commutative laws, 113
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exclusive, 58
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gate, 95
gate representation
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not, 96
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laws of logic, 111
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proofs, 124
summary, 122
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proofs
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