Quiz
a) $y=f(x+3)$

Left Shift
b) $y=f(x)+3$ shift U_{p}
c) $y=f(-x)$

Reflection in y-axis
Horizontal Reflection
d) $y=3 f(x) \quad$ Vertical Stretch
e) $y=f(3 x)$ Horizontal Compression
$y=x^{2}$

$$
y=(x+3)^{2}
$$

$(-3,0)$

Quiz Tues $12^{\text {th }} 4.3$
Omit Section 4.4 \#3
4.3 Quadratic Functions Cont'd

RECAP

$$
\begin{array}{ll}
\frac{\text { Parabola }}{y=a x^{2}+b x+c} & \frac{\text { Vertex }}{x=\frac{-b}{2 a}} \\
y=a(x-h)^{2}+k & (x, y)=(h, k) \\
y=a(x+h)^{2}+k & (x, y)=(-h, k)
\end{array}
$$

Why is the vertex of $y=a x^{2}+b x+c$ at $x=\frac{-b}{2 a}$?

$$
y=a x^{2}+b x+c
$$

Complete the Square

$$
y=a\left(x^{2}+\frac{b}{a} x\right)+c
$$

Divide $\frac{b}{a}$ by 2 : $\frac{b}{2 a}$

$$
y=a\left(x+\frac{b}{2 a}\right)^{2}+\#
$$

Vertex: $x=\frac{-b}{2 a}$
Ex:

$$
\text { X } \leftarrow f(x)=x^{2}+4 x
$$

a) Solve $f(x)=g(x) \quad[$ find $x]$

$$
\begin{gathered}
x^{2}+4 x=-x^{2}+30 \\
2 x^{2}+4 x-30=0 \\
2\left(x^{2}+2 x-15\right)=0 \\
2(x+5)(x-3)=0 \\
x=-5,3
\end{gathered}
$$

b) Solve $f(x)<g(x)$ [find x]

$$
-5<x<3
$$

4.4 Quadratic Models
[Real-life problems involving parabolas]
Ex: Enclose a rectangular area with $3,000 \mathrm{~m}$ of fencing. Find the maximum area and the dimensions that achieve it.

Maximize area $A=x y$
Given: total fencing $=3,000$

$$
\begin{aligned}
2 x+2 y & =3,000 \\
2 y & =3,000-2 x
\end{aligned}
$$

$$
\begin{aligned}
& 2 y=3,000-2 x \\
& y=1500-x
\end{aligned}
$$

Maximize

$$
\begin{aligned}
& A=x(1500-x) \\
& A=-x^{2}+1500 x
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-b}{2 a}=\frac{-1500}{-2}=750 \\
& y=1500-x=1500-750=750 \\
& A=x y=750^{2}=562,500
\end{aligned}
$$

Maximum area is $562,500 \mathrm{~m}^{2}$, achieved by dimensions $750 \mathrm{~m} \times 750 \mathrm{~m}$.

