
Week 3 Thursday January 23, 2019 10:34 AM

3.3 Contid

$$f(b)$$

$$f(a)$$

$$f(a)$$

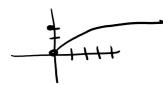
$$f(a)$$

$$f(b)$$

$$f(a)$$

$$f(b)$$

$$f(b)$$


$$f(b)$$

$$f(a)$$

$$f(b)$$

Ex: Find average rate of change of

$$f(x) = 5x^{2}+z$$
 from $x=z$ to $x=4$
 $\frac{f(b)-f(a)}{b-a} = \frac{f(4)-f(z)}{4-z} = \frac{82-22}{2} = \frac{60}{2} = 30$

<u>Ex</u>: $y = \frac{1}{3c}$ is not orthonous

Piecewise - Defined Functions

$$\frac{Ex}{F(x)} = \begin{cases} \sqrt{-x}, & x < 0 \\ x^{2}+1, & 0 \le x \le 2 \\ 6-x, & 2 < x \le 6 \end{cases}$$

$$x < 0$$

$$y = \sqrt{-x}$$

$$y = \sqrt{-4}$$

$$y = \sqrt{-(-4)} = 2$$

$$\sqrt{-(-4)} =$$

Lectures Page 2

c) Is
$$f(x)$$
 continuous?
NO
d) Domain of $f(x)$?
(set of x-values)
 $-\infty < x \le 6$
e) Range of $f(x)$?
(set of y-values)
 $y \ge 0$
 $0 \le y < \infty$
 E_{x} : Graph y=1x1
 $\frac{x}{1} + \frac{y}{1} = 1$
 $0 = 101 = 0$
 $1 = 1 = 1$
Note: $y=1x1$ is a piecewise-defined function
(and Continuous!)
 $|x| = \begin{cases} -x \\ x \\ x \end{cases}$, $x \ge 0$