Week 10 Wednesday

March 13, 2019 7:49 AM

Ex: Circle's radius is 6m. Find area of sector formed by an angle of 45°. $A = \frac{1}{2}r^2\theta$ Use radians (unitless) $\theta = 45^\circ \times \frac{\pi}{160} = \frac{\pi}{4}$ $A = \frac{1}{2} \cdot 6^2 \cdot \frac{\pi}{4}$ $A = \frac{9\pi}{2} m^2$

SINE
$$\sin \theta = \frac{O}{H}$$

COSINE $\cos \theta = \frac{A}{H}$

TANGENT $\tan \theta = \frac{O}{A}$

COSECANT $\csc \theta = \frac{1}{\cos \theta} = \frac{H}{A}$

COTANGENT $\cot \theta = \frac{1}{\tan \theta} = \frac{A}{O}$

"SOH(AH70A"

Ex: Given sin
$$\theta = \frac{3}{4}$$
 and θ is acute,
find remaining five values.

$$3^{2} + \chi^{2} = 4^{2}$$

$$\chi^{2} = 16 - 9$$

$$\chi^{2} = 7$$

$$\chi = \pm \sqrt{7}$$

$$1 = \sqrt{7}$$
Sin $\theta = \frac{3}{4}$ Gro $\theta = \frac{\sqrt{7}}{4}$ the $\theta = \frac{3}{4} = \frac{3\sqrt{7}}{7}$

$$CS(\theta = \frac{4}{3})$$
 Se($\theta = \frac{4}{4} = \frac{4\sqrt{7}}{7}$ G+ $\theta = \frac{\sqrt{7}}{3}$

tan
$$\theta = \frac{\sin \theta}{\cos \theta}$$
 and $\cot \theta = \frac{\cos \theta}{\sin \theta}$
for any angle θ
Notation: $\sin^2 \theta$ means $(\sin \theta)^2$
 $\cos^2 \theta$ " $(\cos \theta)^2$
etc.

$$\begin{cases}
S & \text{implify} \\
S & \text{in}^2 \theta + 6s^2 \theta \\
&= (sin\theta)^2 + (os\theta)^2 \\
&= (older)^2 + (alder)^2 \\
&= older)^2 + (alder)^2 + (alder)^2 \\
&= older)^2 + (alder)^2 + (alder)^2 \\
&= older)^2 + (alder)^2 + (alder)^2 + (alder)^2 \\
&= older)^2 + (alder)^2 + (alder$$